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Abstract. Visualization is essential for data analysis and it is particu-
larly challenging for data in high-dimensional space, especially for tem-
poral information. Many techniques have been employed in an attempt
to transform multivariate time series data to one-dimensional data by re-
ducing the number of features in order to visualize their time-dependent
behaviors. However, the applicability of these approaches is restricted to
a limited number of data instances that can be visualized simultaneously.

We present a technique to visualize time series and trajectories that
overcomes these limitations by transforming these data into subspaces
which allows data analysts to easily select the instance of interest from
a bunch of data. The benefits of our proposed method are threefold: it
provides i) a visual representation of time-dependent data in a massive
amount simultaneously, ii) a very concise feature representation and iii)
an easy identification of anomalies. The results are demonstrated by
employing this technique to various data traits from public archives, they
are i) univariate time series data from the UCR archive, ii) multivariate
time series data from several sources, and iii) human motion trajectories
from two motion capture (MoCap) datasets.
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1 Introduction

Visualization techniques help us to understand data by observing its patterns.
A common approach to meet this challenge is to transform the high-dimensional
data representation into lower dimensions. High-dimensional datasets typically
have certain traits that can be captured after a transformation to a different
coordinate system, and become directly visible to the human eye when mapped
to two or three-dimensional space. Although there are numerous dimensionality
reduction techniques available; nevertheless, there are much fewer dimensionality
reduction approaches that are practical enough for the general application of
which take the temporal information into account. Some interesting techniques
for visualization of time-dependent data, for example [4,7,9] are tied to a domain-
specific application and their data are not publicly accessible; therefore, it raises
a question of whether to adopt those techniques to a new domain application
even though the data may be categorized in the same time characteristics.

Generally, a known method for visualizing time series data is by using a line
graph which is widely used in the monitoring of vital signs in order to detect the
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abnormal exceeding of a specified threshold. However, the line graph does not
work well for multivariate time series, and it is especially difficult to visualize a
large collection of signals. On top of that, for the case of a multivariate time series
where the interdependencies occur among many variables, detecting the outliers
happens to be much more difficult and cannot be solved by visualizing each data
feature on the timeline. A conventional approach to visualize high-dimensional
time series data is to examine their distance matrices. One benefit of using a
distance matrix such as Euclidean distance is that we can further analyze the
matrix using a recurrence plot (RP) by applying a threshold distance and the
Heaviside function. The RP is well-known for the visualization of time series
because it allows any high-dimensional phase space trajectories to be visualized
in subspaces through a two-dimensional representation of it recurrences.

Unlike other traditional dimensionality reduction approaches for temporal
data which allow a user to analyze signals over time, our technique allows
the user to inspect the structure of a bunch of time series data or
trajectories simultaneously and to detect the outliers. Particularly for
multivariate time series which have many practical usages in real-world appli-
cations, there is no general solution to compare a bunch of information at the
same time. We demonstrate that it is possible to apply conventional dimension-
ality reduction approaches from a non-time-series to transform high-dimensional
time series into low-dimensional subspaces by neglecting time information
in the display. Although the dimensionality reduction techniques themselves
are not new, to the best of our knowledge, such an attempt to visualize the time-
dependent data by neglecting the time axis has never been investigated before.
The advantages of our approach are threefold. They allow the data analyst: i)
to visualize the large-scale time series data clusters simultaneously, ii) to get a
very concise feature representation of the time series regardless of its length and
the number of features, and iii) to detect an anomaly in the data.

2 Data Transformation To Subspaces

Let p be the total number of instances in the dataset. For any given instance i,
each individual instance is specified by {Xi} where i ∈ {1, .., p}. For any high-
dimensional data sequence Xi with a fixed number of features m and arbitrary
length Ti, we can be interpreted Xi as a real-valued matrix X with a dimension
m × Ti as illustrated in Figure 1a. Pick the number of selected components cn
for any transformation F to the matrix Xi where n is the number of dimen-
sionality reduction technique used. For the chosen first principal components c1
at n=1, we obtain F1(Xi) as illustrated in Figure 1b where Ti ≥ c1. Hence, to
apply n-times of dimensionality reduction of F to Xi for cn components, namely
Fn(Fn−1(...F1(Xi)...)) as shown in Figure 1c, requires:

Ti ≥ c1 ∀i ∈ {1, . . . , p} and (m · c1) ≥ c2... ≥ cn (1)

Usually, the sequence length of any signal instance is much larger than the
selected number of principal components, that is Ti � c1 ∀i ∈ {1, . . . , p}. Before
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Fig. 1: Transformation of time-dependent data into subspaces. a) p instances of
time-dependent data of m features with arbitrary sequence lengths Ti. b) Results
after the first transformation of F1. From this point onward, the arbitrary size of
“time dimension” Ti has become all equal with the selected principal components
c1. c) The data after an arbitrary nth transformation giving each signal instance
of size cn which can portray a small feature representation of the data.

applying the first order transformation, n = 1, we may build a feature vector by
normalizing each Xi

j,k where j ∈ {1, ...,m} and k ∈ {1, ..., Ti} as:

Xi
j,k ⇐ Xi

j,k − X̄i
j (2)

where X̄i
j is the average over the sequence length Ti of feature j. Likewise, for the

case of the trajectories of MoCap dataset, we first normalize the stick-figure’s
joint positions which were computed by the marker positions following [12] by
subtracting the position of the center of the torso from each joint position. The
normalization by subtracting the mean is optional but is proved to enhance the
visualization in many cases. For the case of different scaling of features, the
rescaling prior to applying the dimensionality reduction transformation can be
beneficial. However, normalizing time series data by dividing it by its standard
deviation does not improve our visualization in general. Similar evidence was
reported in [11] for human motion classification. After applying the first trans-
formation of F1 on each normalized Xi, the data sequence Xi can be newly
represented as F1(Xi) ∈ Rm×c1 as depicted in Figure 1b. The time axis now has
been replaced with the number of principal components of the first transforma-
tion. The feature vector for the second order transformation may be arranged
using a concatenation of an average vector to F1(Xi) as [X̄i

j ;F1(Xi)]. After a

second order transformation, F2(F1(Xi)), the new matrix can be shortly written
as F2

i ∈ R1×c2 which is depicted in Figure 1c.

3 Datasets

The datasets in this paper were selected by considering the number of data
classes up to twelve classes which can be easily identified by different colors.
There is no restriction on the number of features nor sequence lengths.
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3.1 Univariate Time Series

The UCR archive [3] contains 85 datasets of univariate time series. It is target
for benchmarking time series classification. Each dataset consists of a separate
training and test set of a fixed sequence length which was already normalized to
have zero mean and a standard deviation of one. We picked five datasets from
this archive and merged the training and test data together because we only
focus on the visualization of data and not on classification. These datasets are
Plane, ItalyPowerDemand, Wafer, CBF and ECG5000.

3.2 Multivariate Time Series

We selected three datasets which are frequently used in benchmarking classi-
fication tasks as found in [1, 5, 6]. These three datasets were: JapaneseVowel,
NetworkFlow and Wafer (It has the same dataset name but different set from
the UCR). The JapaneseVowel dataset was a collection of nine male speakers
for a total of 640 sequences. Each utterance forms a sequence with lengths in
the range of 7-29 and consists of 12 features each. The Networkflow dataset
represents a network traffic protocol of a total of 1337 sequences with the se-
quence length of 50-997 where a series of network packets define a sequence. Each
packet consists of four attributes which are used to identify the applications that
generated the traffic flow. These attributes are a packet size, transfer direction,
payload, and the duration. The Wafer stands for silicon wafer in semiconductor
manufacture. The dataset contains 1194 sequences with the sequence length of
104-198. Each sequence consists of six measurement variables recorded during
the etch process. Each wafer is marked as normal or defective.

3.3 Motion Capture

We chose two different MoCap datasets, the UTD-MHAD [2] and the HDM05 [8]
to demonstrate the effectiveness of our proposed technique.

The UTD-MHAD consists of 27 different actions performed by eight sub-
jects. Each action was recorded using 20 markers in 3D coordinates, resulting
in the total number of 60 features. Each subject repeated the same actions four
times (trials) for only one cycle, and each action trial has different sequence
length. Hence, we have only 32 sequences for each action in total. This small
amount of data is statistically not interesting. Based on the results of a quasi-
view independent of human movement in 3D described in [12], an eigenvector of
the largest eigenvalue still maintains its projection size even when a subject per-
forms the same action facing in a different direction. Therefore, we rotated the
actor’s default view by 10, 20 and 30 degrees in order to obtain more samples.

The HDM05 was originally made up of 130 classes consisting of five subjects,
called “bd”, “bk”, “dg”, “mm” and “tr”, performing actions with and without re-
peating the same cycles separately. Following [10], we grouped the non-repetitive
and repetitive motions together yielding 65 actions, resulting in a various num-
ber of trials in each action. Some actions e.g., walk consists of four types of
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walk, they are walk2StepsL, walk2StepsR, walk4StepsL, and walk4StepsR. In this
dataset, each user had more freedom to perform the action, for example, the
numbers of repetitions and the directions of movement were not fixed.
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Fig. 2: Results of the dimensionality reduction of 210 sequences of “Plane” using
(a) PCA and (b) Kernel PCA with RBF kernel. Nine outliers listed on the left
side of each image (a) and (b) can be easily identified in the two-dimensional
views (That is only the first two principal components are drawn). The right
side of each image shows the feature representation map of the corresponding
algorithm from three principal components of a matrix size 30× (3 · 7), where 30
signals of each data class are in the rows and three components of seven classes
are in the columns. The irregular patterns in each class found in the feature
representation map highlighted in ellipses at (a)-right can be found in the same
positions at the (b)-right. The feature vectors of the data class and as seen
in the feature maps are very similar.

4 Visualization Results

In this section, we will examine the outputs from projecting data on 2D and
3D space after applying the transformations discussed in section 2. Without
prior knowledge of the characteristics of the data, the dimensionality reduction
techniques were randomly chosen from two characteristics, linear projections i.e.,
PCA and nonlinear projections such as kernel PCA with nonlinear kernels and
t-SNE. We selected some interesting outputs to be demonstrated here.

4.1 Visualization Results of The Univariate Time Series

The results of applying two dimensionality reduction techniques to Plane in the
UCR archive are displayed in Figure 2a and Figure 2b. Not only do our outputs
exhibit to the viewer the intrinsic properties of each data cluster, but they also
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Fig. 3: Results of the dimensionality reduction of selected datasets in the UCR
archive. a) 1097 sequences of “ItalyPowerDemand” using Kernel PCA. b) 7174
sequences of “Wafer” using PCA. c) 930 sequences of “CBF” using PCA. d) 5000
sequences of “ECG5000” using PCA. This dataset has much of unbalancing in
the data in each class. The number of signals in each class are: ( ) 2919, ( )
1767, ( ) 96, ( ) 194 and ( ) 24.

(a) (b) (c) (d)

Fig. 4: Results of the dimensionality reduction of multivariate time series. a)
“JapaneseVowel” with PCA followed by t-SNE (n = 2, the perplexity of t-
SNE 40). b) “JapaneseVowel” with PCA followed by double t-SNE (n = 3, the
perplexity of t-SNE 40 and 30, respectively). c) “NetworkFlow” using PCA and
t-SNE. d) “Wafer” using PCA and t-SNE.

reveal the outliers that laid afar from their groups. It is obvious that using just
three principal components as illustrated in Figure 2a and Figure 2b can make
a time series much easier to interpret. Even employing different dimensional-
ity reduction techniques, we can easily spot the same outliers from the feature
representation maps on Figure 2b-right (no highlight) at the same locations
on Figure 2a-right (highlighted with small ellipses). Furthermore, the outputs
of four other datasets in the same archive, namely, ItalyPowerDemand, Wafer,
CBF and ECG5000 were illustrated in Figure 3a-3d. As the figures show, several
thousands of time series can be displayed simultaneously in the same plane. The
unbalanced data, the data clusters, and anomalies can be easily identified.
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Fig. 5: Results of the dimensionality reduction of human movements in the UTD-
MHAD. a) Ten actions using PCA followed by Kernel PCA. b) 3D projection of
the same action set as (a) using Kernel PCA and PCA. c) The same action set
as (a) using Kernel PCA with two kernels, RBF and polynomial, accordingly.
The dashed line was drawn to separate another view. d) Twelve actions using
PCA and Kernel PCA.
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Fig. 6: Results of the dimensionality reduction of human movements in the
HDM05. a) 446 number of actions from a default view using Kernel PCA and
PCA. Three movements of “jumpDown” ( ) of user “dg” (34 , 35 , 36) and one
movement of user “mm” (37) are laid far away from the others (in the brown
ellipse). b) Three-dimensional projection of 1784 trials from ten actions as (a)
with additional movements of rotating subjects by 10, 20 and 30 degrees. c)
Two-dimensional projection of (b). d) A similar effect in a different subset of
motions of four viewpoints comparing to c) depicted in different colors from (d)
→ (c) as the following: “jumpDown” ( ), “squat” ( → ), “jumpingJack” (
→ ), “hopLLeg” ( → ), “sitDownChair” ( → ) and “walk” ( → ).

4.2 Visualization Results of The Multivariate Time Series

For multivariate time series, the result of applying PCA followed by t-SNE,
namely using n = 2 to JapaneseVowel is displayed in Figure 4a. Figure 4b is the
output of adding a second t-SNE (n = 3) with smaller perplexity to Figure 4a.
Generally, applying just two appropriate transformations should be sufficient to
capture an important structure of the data, however in this case we prefer to have
more compact clusters. Figure 4c displays two patterns of traffic data flow from
the NetworkFlow. An inset in the figure shows a two-dimensional projection. The
characteristics of the data are very different in large scale, that is the direction
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bd 28 bk 32 dg 34 bd 28 bk 32 dg 34 mm 37 tr 38

Fig. 7: Five subjects performs “JumpDown” ( ) from the default view as seen
in Figure 6a. From left to right: the first three images are the 3D projection of
three subjects. The next five images are the simplified 2D projections in which
the trajectories are much easier to be observed. The subjects “dg” and “mm” face
90o opposing to the direction of “bd”, “bk”, and “tr” causing different patterns
of the trajectories and are considered as another group as seen in Figure 6a.

T28 = 317

bd28

jumpDown

T34 = 341

dg34

jumpDown

T37 = 381

mm37

jumpDown

T216 = 158

bd216
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T228 = 323
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T252 = 145

dg252

2StepsL

T272 = 325

dg272

4StepsR

T290 = 258

mm290

4StepsL

Fig. 8: A comparison of eight trials in the HDM05 between applying the unthresh-
olded RP and our proposed algorithm with six principal components lying below
each corresponding RP. The first three images on the left are from the action
“jumpDown” ( ) as depicted in Figure 7. The next five images are obtained from
four types of “walking” ( ). Notice the time length (Ti) where the repetitions
of the walking cycle occur.

(a) (b) (c) (d)

Fig. 9: Variations of transformation. a) “CBF” using MDS. b) “ECG5000” using
Kernel PCA with polynomial kernel. c) “TwoPatterns” in the UCR archive using
PCA. d) “TwoPatterns” using Kernel PCA with third-degree polynomial.

of the traffic is just either 1 or 0, whereas the payload sizes are about a few
thousand of units. Nevertheless, our approach allows a user to easily spot an
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outlier. An output of Wafer where the wafers were marked either defective ( )
or not defect ( ) from 1194 signals has been revealed in Figure 4d.

4.3 Visualization Results of The Motion Capture

The UTD-MHAD dataset. The outputs of applying the proposed method
to the UTD-MHAD can be seen in Figure 5a–5d. Ten actions from Figure 5a
are DrawCircleCCW, StandToSit, Jog, Walk, SwipeRight, ArmCurl, SwipeLeft,
Bowling, Catch, and Clap. Four actions which involve only one arm movement,
SwipeLeft, SwipeRight, Catch, and DrawCircleCCW are drawn very close to each
other in two-dimensional space; while two-hand movements, ArmCurl and Clap
plots are also close to one another. The actions concerning moving hands and
feet such as Jog and Walk can be related to each other in the plot. The rest of
the actions, StandToSit and Bowling are obviously distinct from other actions.
When the transformation algorithms have been changed, this yields different
patterns as found in Figure 5b-5c. It is not easy to interpret the data by simply
inspecting Figure 5c without understanding the underlying patterns. There are
two viewpoints to be used to interpret this figure: i) two groups of actions are
separated by the dashed line and ii) four groups of actions which are perpendic-
ular to the dashed line. The first view divides actions into two groups, one group
involving actions with just “hands” moving lies on the left side of the dashed
line and another group on the right involves actions in which both, “hands” and
“legs” move. From the second viewpoint, the data can be seen as four clusters,
as data lies perpendicular to the dashed line which is the consequence of rotating
subjects around an axis by viewing the same action from four angles (0, 10, 20,
and 30 degrees). As a result, these four groups look quite similar to each other
but just shifted along the same axis. Moreover, the results of the transforma-
tion of twelve actions are displayed in Figure 5d. We take out three actions,
DrawCircleCCW, SwipeRight and ArmCurl and add five actions, Knock, Pick-
upAndThrow, SitToStand, BasketballShoot, and Throw to the plot. The action
StandToSit now gets closer to the new action SitToStand, whereas the actions
about one arm movement Knock, Throw, SwipeLeft and Catch lie close to each
other. Some data of Jog and Walk lay close to each other, and the rest of actions
such as BasketballShoot, Clap, Bowling, PickupAndThrow are properly clustered.

The HDM05 dataset. The results of applying similar techniques as to the
UTD-MHAD to the HDM05 can be found in Figure 6a-6d. Figure 6a shows
446 trials from ten actions using the default view (0◦) of MoCap. The action
jumpDown ( ) has the minimum number of trials because it consists of only
13 trials, of which four trials are from the subject “bd”, three trials from the
subject “dg” and another three trials from the subject “tr”, two trials from the
subject “bk” and one trial from the subject “mm”. Notice that four trials of
the jumpDown from the subject “dg” and “mm”, 34 , 35 , 36 and 37 lay far away
from the others in the brown ellipse. When we looked closely to these particular
sequences as depicted in Figure 7, we found that the subjects “dg” and “mm”
have completely different trajectories compared to the subjects “bd”, “bk”, and
“tr”. This is because these two subjects turn completely by 90 degrees difference
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to the camera, or in perpendicular to the other three subjects “bd”, “bk”, and
“tr”. This is the reason why those four trials of jumpDown are laid afar from
the group. Next, when we slightly rotated these five subjects in all trials by 10,
20, and 30 degrees, the patterns of each action in these four viewpoints can be
observed in Figure 6b- 6d. Figure 6b shows the first three principal components
of these four views from the rotations (0◦, 10◦, 20◦, 30◦). After exchanging four of
ten actions, while six actions are kept as depicted in Figure 6c and Figure 6d, the
shapes and distributions of these actions still remain the same in the
subspaces. Notice the distributions of jumpDown, squat, jumpingJack, hopLLeg,
sitDownChair and walk in Figure 6c comparing to Figure 6d. Additionally, eight
images in Figure 8 show the comparison of the visualization of jumpDown and
walk between the unthresholded RPs and our feature representations. The RPs
are symmetric matrices of size Ti×Ti but we fit them to the same image size for
a comparison. By comparing our extracted features with six components which
are laid below each corresponding RP, we can easily spot two distinct groups
of action jumpDown and walk. The RP of action jumpDown from the subject
“dg” 34 has a distinctive pattern other than the subject “mm” 37 , whereas
the extracted features from our method for both actions show about the same
features which are in accordance to the trajectories illustrated in Figure 7. The
action walk consists of four types of walking, “2StepsL”, “2StepsR”, “4StepsL”,
and “4StepsR”. The number “2” and “4” indicate the walking steps, while the
“L” and “R” indicate whether left or right leg starts. By comparing the RPs
of walk in Figure 8, the repetitive actions such as two steps (2Steps) or four
steps (4Steps) by our method yield similar fixed small features. The “4Steps”
walk in the RP reveals two harmonic oscillations or two complete cycles, while
“2Steps” shows one cycle of action. Furthermore, an output from the subject
“bk” have a distinct feature but quite close to “bd”, while the features of “dg”
and “mm” are about the same. These results comply with Figure 6, Figure 7
and Figure 8. The trivial changes e.g., either left leg (L) or right leg (R) starting
first have no significance considering from the involved markers on one leg versus
the markers on the whole body. The concept of principal components makes the
results robust to noise and the trivial changes.

5 Discussion

5.1 Stability and Robustness

The current trends of time series and trajectory classification are to use deep
networks by fine-tuning millions of parameters to achieve the best output per-
formance. However, it lacks an explanation of why a particular signal fails. Fur-
thermore, some outliers may lead to overfitting of the training data. Yet, our
approach can complement this deficiency by offering a concise feature represen-
tation which can give data analyst an understanding of the underlining patterns.
By projecting the extracted features onto a two- or three-dimensional space, it
provides a visual representation for a data analyst to have an overview of a
bunch of data simultaneously. The results are robust to small changes as seen in
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Figure 6c, Figure 6d and Figure 8. Five images in Figure 8 show similar feature
representations for different types of walk (and three images of jumpDown) from
various subjects leading to the same direction. In addition, even though we em-
ployed different transformation techniques, we can still spot the same outliers in
different visual representations as the results shown from “Plane” dataset.

5.2 Limitations and Variations of Transformation

Our proposed technique has a few limitations. First and foremost, the dimension-
ality reduction methods employed in our experiment were selected from several
known techniques based on the assumption of linear subspace embedding and
nonlinear manifold learning of the data. Therefore, we are not able to tell which
technique is the best choice. For instance, the output of employing Multidimen-
sional Scaling (MDS) on CBF (previously PCA was employed) now can be seen
in Figure 9a. This new figure shows better separation of three data clusters
comparing to Figure 3c. Changing the transformation of ECG5000 from PCA
(depicted in Figure 3d) to Kernel PCA in Figure 9b gives us an interesting
alternative viewpoint. Nevertheless, we have had several cases of failure, for in-
stance, TwoPatterns in the UCR archive which composes of 5000 sequences. The
data clusters cannot be clustered in the way we had expected. The results are
shown in Figure 9c-9d. Another failure was also found in case of visualizing
the UTD-MHAD dataset when all the actions in a subset involved only hand
gestures. This may be because the changes in the movement due to one arm
gestures with three corresponding markers (of dimension 3× 3) were considered
insignificant when compared with the movement of a whole body consisting of
20 markers (of dimension 20×3). Considering PCA which we employed Singular
Value Decomposition (SVD) for a matrix decomposition, for any given element
i, Xi has an arbitrary size of m × Ti. We may assume that the best rank r of
the matrix Xi is the number of crucial time points c1. The matrix Xi is just a
product of two matrices U and V where U is an m × c1 matrix expressing the
weighted factor, and V is a c1 × Ti matrix. We keep the most highest weighted
factors in U and repeat the process for n times. Hence, the principal components
cn are to be in the final results.

6 Conclusion

In this paper, we have presented a new approach for time series and trajectory
visualization by employing existing well-known non-time-series dimensionality
reduction techniques. Our proposed methodology does not seek to make an in-
terpretation of an individual signal nor to inspect the changes of data over time.
Nonetheless, we can reveal some meaningful information such as the overview of
data clusters. Moreover, outliers of each data class can be easily identified. By
integrating this technique into a visual analytic pipeline in visualization tools,
it can take the load off a data analyst in order to investigate any anomalies
presented in the large data size. The datasets applied in the experiments were
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selected from diverse sources to demonstrate and enforce the robustness of our
proposed technique. This technique is not tailored to any particular data type,
hence it can be integrated into any application domain. In addition, our approach
is very simple to implement and lightweight as well as reproducible across dif-
ferent runs. Finally, it is to be noted that good clustering depends on the inter-
relationship of the data structure and the correctly applied manifold learning
method to achieve the optimum results.

References

1. Baydogan, M.G., Runger, G.: Time series representation and similarity based
on local autopatterns. Data Mining and Knowledge Discovery 30(2), 476–
509 (Mar 2016). https://doi.org/10.1007/s10618-015-0425-y, https://doi.org/

10.1007/s10618-015-0425-y

2. Chen, C., Jafari, R., Kehtarnavaz, N.: UTD-MHAD: A multimodal dataset
for human action recognition utilizing a depth camera and a wearable in-
ertial sensor, vol. 2015-December, pp. 168–172. IEEE Computer Society (12
2015). https://doi.org/10.1109/ICIP.2015.7350781, http://www.utdallas.edu/

~kehtar/UTD-MHAD.html

3. Chen, Y., Keogh, E., Hu, B., Begum, N., Bagnall, A., Mueen, A., Batista, G.: The
UCR time series classification archive (2015), http://www.cs.ucr.edu/~eamonn/
time_series_data/
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