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Abstract— We propose a neural architecture for the recognition
of objects by haptics. We demonstrate its performance for a set
of household objects and toys using a low cost 2D pressure sensor
of coarse resolution, which is moved by a robot arm guided by
contact points. The approach transfers the well known view-
based method from computer vision to the domain of tactile
sensing. However, in contrast to computer vision, not static
frames but entire time series of 2D pressure profiles are evaluated.

I. INTRODUCTION

The human skill in handling objects relies mostly on haptics.
However, in robotics approaches for haptics-based control are
still rare. This is partly due to the lack of sensors: Though
high quality sensors exist, e.g. based on piezo-resistive [1] or
piezo-electrical [2] pressure sensitive foils, sensors sufficiently
small and flexible to be mounted on an artificial hand are
hardly available. Another important problem is that pattern
recognition from the rather coarse resolution of pressure
sensors is still difficult. Significant progress in this field has
been made with the introduction of dynamic tactile sensing [3],
[4], which allows in a natural way the gathering of much more
information than static sensing. However, dynamic sensing has
so far mostly been applied either to reconstruct shape as a
such [5], [6] and fitting object models to these shapes [7], or
to explore surface features [8].

However, humans do not recognize objects by explicit shape
reconstruction and model matching, but rather in a holistic
manner. An attempt to avoid geometric modelling and to deal
with uncertainty using fuzzy sets and neural nets was made in
[9] within the context of contact formation. For an overview
on tactile sensing see [10].

In this paper, we show that the view based approach of
visual object recognition can be successfully transferred to
tactile sensing of object identity. For view based recognition,
sample views of objects are collected and used to build an
implicit representation, instead of explicitly modelling object
geometry. The idea is to memorize low level signal properties
rather than high level models. In this field, eigenspace rep-
resentations have become popular, e.g. for object- and face
recognition [11], [12], and robot vision [13]. For the present
work, local principal component analysis (local PCA) [14],
[15] is applied for a holistic object representation.

The view based approach has two major benefits which
make it a useful technique also for tactile processing: (i)
The difficult step from the signal to a memorized model is

unnecessary, i.e., there is no explicit shape reconstruction. (ii)
The neural recognition system applied here can be trained from
examples, including feature extraction.

We use a low cost 2D sensor array of only coarse resolution
to explore and recognize natural objects by their shape. In
the following section, the hardware setup for data acquisition
will be outlined. Section III describes the neural processing
architecture, section IV the results for a set of household
and toy objects. The final section V discusses benefits and
problems of the approach and the consequences for future
research.

II. EXPERIMENTAL SETUP

A. Hardware

Fig. 1 shows the used sensor, which has the shape of a
square matrix (Type DSA100-256, Weiss Robotics). It has a
resolution of 16×16 pressure sensitive points with a distance
of 6 mm. Pressure on a sensor point is measured by the
electric current which goes from the center (small round
circle) through a pressure sensitive foil (black material). The
resistance of the foil decreases with increasing pressure.

Each sensor point can be sampled at 25 Hz with 12 bit
pressure resolution. For the following, however, a reduced
frame rate of 10 Hz and 8 bit for pressure are used to keep the
amount of data manageable. The sensor array is mounted to the

Fig. 1. DSA100-256 pressure sensor. The pressure sensitive black foil is
partly removed to show the 16×16 grid of measuring points.



end-effector of a PUMA-200 industrial robot arm, controlled
under RCCL [16].

B. Data acquisition

To gather tactile data from an object, it is positioned on an
elastic pad (Fig. 2). Since the pressure imposed by the end-
effector is low, fixation of the object is not necessary. The
robot arm is moved in three phases to gather tactile data:

1) Approach: The robot lowers the sensor array towards the
object in a horizontal position (first image of Fig. 2).
When the object is touched and a certain pressure
detected, the approach stops (position 1 in Fig. 3).

2) Tilt: The robot rotates the sensor to the right (upper right
in Fig. 2), the rotation axis goes through the rightmost
contact point. As soon as a new contact point (to the
right) is detected, it becomes the new center of rotation
(position 2 in Fig. 3). The movement stops when a
maximum tilt angle is reached or the sensor has contact
to the elastic pad. The latter case is assumed when the
border points of the sensor detect pressure. This is a
reasonable working solution as long as the object size
is sufficiently small.

3) Move around: Steadily keeping contact, the robot arm
now moves the sensor around the object, i.e. first forward
while reducing the tilt to the right (lower left of Fig. 2),
then to the left (lower right of Fig. 2), and so on.

Frames are recorded beginning with the first contact. The
length of the sample recording is fixed to 16 seconds, so in
total NF = 160 frames are sampled. If the actual time needed
to go around the object is less, the last frames remain blank.

Fig. 4 shows examples of the sensor profiles for two
different objects, the frames are arranged in temporal order
(from left to right and top to bottom). For each of the objects,
only 60 out of 160 frames are shown for simplicity (every
second frame is omitted plus the last 40 frames). Sensor

Fig. 2. Procedure to take a sequence of pressure profiles. The sensor is
mounted to a PUMA-200 robot arm and lowered to the object until contact
is sensed (upper left). Then the sensor records a sequence of 160 samples
while being moved around the object, keeping contact steadily. The camera
also visible at the end effector is not used in the current experiments.
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Fig. 3. 2D illustration of tilting the sensor: From the horizontal position of
first contact (1), the sensor is tilted to the right until a new contact point is
detected (2), then it is rotated around the new point (3).

points detecting high pressure are bright. The first few frames
correspond to the touchdown onto the object, as visible best
for the second object (a cup), for which the border is clearly
visible before the tilt and rotation phases begin.

The sparse pressure profiles of Fig. 4 illustrate that the
information provided in a single frame F(t) is poor: Due
to the coarse spatial resolution, the objects leave only quite
unspecific marks, which are in addition subject to noise. Here,
F(t) ∈ IR16×16 denotes the 16× 16 matrix of pressure values
at time t.

However, the complete trajectory over all frames is unique
for each object. Therefore, to gather more information and
achieve stability by redundancy, the sampled pressure values
F(t) are combined to form a single vector ~x ∈ IRd character-
izing the object. Its dimension is d = NF ·162 = 40960 since
there are 16× 16 sensor points. In the following, it will be
described how the object can be classified from ~x using a
neural approach.

III. TACTILE SIGNAL PROCESSING

To classify objects from their sequence of pressure profiles
~x ∈ IRd , a neural architecture is applied that allows (i) to deal
with high input dimensionality d and (ii) to form features
automatically. By this means the difficult step of “designing”
a feature extraction based on heuristics can be omitted. In-
stead, a three-stage processing architecture is applied (Fig. 5),
which basically consists of a feature extraction based on local
principal component analysis (local PCA) [14], [15] with a
subsequent feature classification by several neural networks.
This system has been successfully applied so far for several
computer vision tasks [17], [13].

The neural system as a whole performs a mapping~x→~y,~x∈
IRd ,~y ∈ IRNC , where ~y is the output vector. The dimension of
~y is here set to the number of different object classes NC. So
the discrete valued result (the class number) is represented
by an NC-dimensional, continuous valued vector to avoid an
artificial introduction of “neighbourhoods” within the class
system. Training is carried out using samples (~xTr

i ,~yTr
i ), where

the target output vectors are a binary encoding of the correct
class number c = 1 . . .NC: (~yTr

i ) j = δ jc, j = 1 . . .NC. Once the
training is complete, the system classifies an unknown input ~x



Fig. 4. Sample sequences of sensor profiles for two different objects. Each
of the small squares shows the pressure on the 16× 16 sensor at a certain
time while the sensor is moved around the object (bright = high pressure).
Only 60 out of 160 frames are shown for simplicity. The first few frames
show the first contact with the object when the sensor is still in a horizontal
position. Evidently, the information conveyed by a single frame is rather small
and unreliable, but the entire time sequence gives a highly object specific
signature.

as the class c′ for which the corresponding output component
has the maximal value: c′ = argmax j(~y(~x)) j .

In the following, both training and application of the three
processing stages are described.

A. Stage 1: Data partitioning

The first stage partitions the input space IRd using vector
quantization (VQ) (see e.g. [18]). A number NVQ of reference
vectors ~ri ∈ IRd , i = 1 . . .NVQ, is positioned in input space by
Activity Equalization VQ (AEV) [19]. A detailed description
of this algorithm is beyond the scope of this paper, in short,
AEV is a method particularly designed for high dimensionality
and a sparsely “filled” input space. AEV avoids the problem
of codeword under-utilization [20], i.e. the problem that in
a high dimensional space many reference vectors are likely
to remain outliers. This is achieved by an explicit count of
codeword access frequencies.

For classification, for an input ~x the best match reference
vector ~rn∗(~x) is searched for which minimizes ‖~x −~ri‖, i =
1 . . .NV Q. The result of the first level is the number n∗(~x).
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Fig. 5. Architecture of the neural feature extraction and classification: For the
input ~x which consists of the pressure values of the entire sequence, first the
best match reference vector is found (left). This selects a PCA-net specialized
to the data in the corresponding Voronoi tessellation cell (middle). Projection
of~x onto the PCs yields the feature vector ~p, which is classified by an attached
LLM-net to obtain the output vector ~y (right). The maximum component of
~y denotes the “winner” class.

B. Stage 2: Local PCA

The second level performs PCA for each of the reference
vectors for the training samples ~x which fall into the cor-
responding Voronoi tessellation cell. For calculation of the
principal components (PCs), to each reference vector ~ri a
single layer feed forward neural network is attached. The NPC

PCs with the largest eigenvalues are computed successively
using the training rule proposed by Sanger [21]. This iterative
procedure is necessary because a direct computation of the
eigenvectors of the input autocorrelation matrix is impossible
due to the high data dimensionality d = 40960. After training,
the weight vectors ~wi j ∈ IRd , i = 1 . . .NV Q, j = 1 . . .NPC of the
neural nets represent the local PCs.

For application, an input ~x is projected onto the weight
vectors ~wn∗(~x), j of net number n∗(~x): ~x → ~pn∗(~x)(~x). The
projection ~p ∈ IRNPC can be regarded as the feature vector of
input ~x.

C. Stage 3: Feature classification

While stage 1 and 2 are trained unsupervised to form
features (the local PCs ~wi j), the third stage classifies the
feature vector ~pn∗(~x)(~x) to obtain ~y ∈ IRNC and thus requires
supervised training. To each of the PCA-nets an individual
neural classifier is attached as a “local expert”. These neural
nets are of the Local Linear Map – type (LLM), for details
see [22]. In short, the LLM is related to the self-organising
map [23] and the GRBF-approach [24]. It performs first
VQ using NLLM reference vectors (or “nodes”) in its input
space, which has here dimensionality NPC. The VQ is again
carried out using the AEV-algorithm [19]. To each of the
nodes a trainable, locally valid linear mapping is attached.
In combination, these NLLM linear mappings approximate the
nonlinear training function. The only parameter of the LLM
is its number of linear mappings, NLLM .

To obtain the final output for ~x, after finding the best match
reference vector number n∗(~x) and the projection ~pn∗(~x)(~x), the
LLM number n∗(~x) maps ~pn∗(~x)(~x) →~y.

D. Discussion of the classification architecture

Local PCA is used for feature extraction because it allows to
obtain efficient features in a purely unsupervised way. While



normal PCA [25] is the optimal linear method to capture
the variance of a data distribution, local PCA is a nonlinear
extension which allows a better approximation of nonlinear
and in particular clustered distributions [14], [15]. It has been
successfully applied in a number of applications for dimension
reduction [26] and pattern recognition [27], [28], [29].

Among the various methods to calculate a local PCA
representation, the algorithm outlined above is a simple one,
since it decouples clustering and PCA. Other approaches
improve this procedure by repeated iterations of clustering
and PCA to minimize the least square reconstruction error
[26]. Even further advanced is the probabilistic method of [30].
The decoupled approach is used here because computational
efficiency of the training is more important than reconstruction
accuracy, the latter can be achieved also by an increase of NV Q.
Decoupled adaptation is computationally cheaper, because the
“product space” of possible VQ- and PCA-solutions does not
have to be searched.

The separation into isolated VQ and PCA has the additional
advantage that no extensive parameter tuning is required be-
cause the algorithms for VQ and PCA are well known and can
be treated as “black boxes” without adaptation of any training
parameters. The remaining parameters are NVQ,NPC and NLLM ,
which are decisive for the achievable system performance and
have to be customized to the complexity of the problem. Too
small values result in poor recognition rates since the networks
do not have sufficient capacity to memorize the variety of
sensor profiles. However, the process of finding suitable values
for NVQ,NPC and NLLM is easy, because in previous work
[31] it could be shown that classification performance rises
smoothly up to saturation with all three parameters. Overfitting
phenomena were not observed, a too large classifier loses only
in classification speed but not in accuracy. Thus, the effort to
find suitable values can be kept manageable.

IV. RESULTS

To test the approach, data were sampled from seven ob-
jects (toy car, pencil sharpener, cup, toy hedgehog, marble,
candle holder and a piece of foam plastic). Each object
was scanned 20 times under slightly different conditions, i.e.
minor translations and rotations of the object. To achieve a
common translational alignment, the 2D center of gravity in
the sensor plane was computed over each complete sequence
F(0) . . .F(159) (not over single frames). So a common 2D
shift of all frames F(t) → F ′(t) of a sequence could be
performed to move the center of gravity to the middle of the
sensor plane. Then the input vector ~x was formed from the
shifted pressure values F ′(t).

For the neural feature extraction and classifier, a choice of
NV Q = 6 reference vectors, NPC = 8 local PCs and NLLM = 20
nodes proved to provide sufficient capacity to memorize the
sequences. The parameters were found by starting with small
values and increasing them in turn as long as classification
performance could be improved. The procedure stops when
no further performance increase can be achieved.

Fig. 6. Local PCA – representation for a fixed time slice t. The first row
shows the reference vectors, below each are the corresponding local PCs in a
column. Most of the reference vectors are not specialized to a single object,
instead, the information of the training set is “spread out” over the whole
representation. As a time series is represented, the complete reference vectors
and eigenvectors would show a moving pressure profile each.

Fig. 6 shows a “slice” of the obtained reference vectors ~ri

and the attached local PCs at a certain time t. It has to be kept
in mind that each reference vector as well as each PC is not a
single prototypic pressure profile but an entire time sequence
of profiles. The first row in Fig. 6 shows the reference vectors,
below each are the corresponding PCs in a column. A close
inspection of the~ri and their PCs reveals that most of them are
not specialized to a particular object. Instead, the information
is spread out over the representation.

For evaluation, the set of 20 sequences of each object
was divided into a training set of 16 sequences and a test
set of 4 sequences. So for seven objects the entire training
set comprises 112 sequences, the test set 28. The system
was then trained to the classification of the seven objects
using the training set, and evaluated on the test set. The
particular partitioning into training- and test set can slightly
influence the measured performance: If, loosely speaking,
the test set lies completely “within” the variety of sensor
profiles covered by the training set, better classifications are
achieved than in the case that the test set comprises sequences
which are untypical (compared to the training set). To reduce



the influence of the random partitioning, computations were
repeated ten times with different training / testing partitioning
and results averaged.

The achieved average rate of correct classifications is 81%,
where results of the single runs range between 74% and 83%,
chance level is ≈ 14% (since “correct” means the system
selects the right one of seven objects). So far, the system has
no rejection class, i.e. there is no way to indicate an unknown
object. The system is restricted to the trained object set, if an
unknown one is presented, it will inevitably be sorted into one
of the trained categories. This problem is familiar from other
pattern recognition tasks: Adaptive systems can be trained to a
certain domain, but not to ignore the “rest of the world”. The
difficulty stems from the complexity of the volume which the
sensor data ~x ∈ IRd cover within IRd . Establishing a general
rejection class would require to define a hull around this
volume, which separates signals of the domain from unknown
ones. Such a border, however, is difficult to establish only from
positive samples.

An important source of information for the system are
located peaks of pressure. Since these are detected by few
sensor points, translations or rotations of an object change
appearance on the signal level drastically and are the main
source of errors — however, mostly when the test sample
shows an object translation not covered by training samples.
Therefore, errors can be reduced by enlarging the training set
accordingly.

V. DISCUSSION AND FUTURE PROSPECTS

We have presented a system for object recognition based
on haptics as a step towards a “view based”, holistic rep-
resentation of haptic sensor data. The main benefit of the
approach is that a suitable and robust data representation can
be achieved by training from examples, without the need to
design a geometrical object model or to select features based
on heuristics. The system works even with a low cost sensor
with coarse spatial resolution.

Still, the method is confined to the identification of isolated
objects presented in a restricted set of poses. However, several
directions of future development appear promising:

1) Temporal alignment: So far it is provided that the object
is positioned in or close to a pose covered by the training
set. If it is rotated to an un-trained pose, it will not be
recognized though the sampled sequence in principle holds the
information. The problem is that the novel sequence cannot be
temporarily aligned with the training sequences. This problem
resembles the “what-where” problem known from computer
vision, though now in the time domain. Possibly, the method
of interest point detection can be transferred from vision to
haptics. If outstanding (“salient”) points can be detected in the
spatio-temporal representation, they could be used to achieve
alignment without the need of an “exhaustive matching” to
find a specific (start-) frame.

2) Sliding: In the present scenario, the sensor is rolled
around the object such that a point of the object always appears
at the same sensor location, which yields a poor representation

due to the coarse resolution. Using a more natural manner of
sensing where the sensor is sliding over the object surface,
an improved effective resolution could be realized. Again, a
holistic representation appears to be feasible, so deconvolution
techniques as in [3] would not be necessary.

3) Active exploration: The strategy for object exploration
could be modified online based on partial results for mainly
three different reasons:

• If the up side of an object does not allow a decision, it
could be turned by a gripper to scan the bottom side.

• Still, only convex surface points can be exploited. De-
tected concavities, however, could be scanned by a
smaller sensor.

• Noisy or incomplete data could be improved by repeated
sampling.

All of the above points are aimed at improving object explo-
ration by the sensor alone. The question arises whether results
could be improved by exploiting geometric information, e.g.
the position of the contact point in 3D space, which is easily
available from the joint angles. Explicit geometric information
would be mostly redundant, because the sequence of pressure
profiles implicitly represents not only the objects surface
properties in the sense of texture, but also part of the overall
object geometry. So what can be gained from 3D information
is mainly the object’s height above the elastic pad (thickness).
The use of 3D information, however, will become necessary
for objects too large to be explored by the rolling sensor
without interruption. For a piecewise sampling, computation
of 3D contact points will be required.
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