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Abstract. We present a computer vision system for judgement on the
success or failure of a grasping action carried out by a three-fingered
robot hand. After an object has been grasped from a table, an image is
captured by a hand camera that can see both the object and the finger-
tips. The difficulty in the evaluation is that not only identity and position
of the objects have to be recognized but also a qualitative judgement on
the stability of the grasp has to be made. This is achieved by defining
sets of prototypic “grasping situations” individually for the objects.

1 Introduction

Grasping objects with robot grippers or even anthropomorphic artificial hands is
one of the most challenging subjects in current robotics. Up to now, the abilities
of robotic systems in grasping objects are surpassed by human skills by far: We
can grasp objects of almost arbitrary shape, many different sizes and we are able
to adapt easily the applied forces to light or heavy weight. This ability relies on
a complex interaction of the controlling neural system and the “sensors”, which
are mainly haptic and visual. Especially force sensing in the fingertips plays an
important role. Unfortunately, there is no technical equivalent to human fingertip
force sensing by now, though progress has been made e.g. using piezo-resistive
pressure sensitive foils [6] for tactile imaging [5,9] or piezo-electrical pressure
sensitive foils [1] for dynamic sensing [2,14].
Though it is no problem to provide high quality sensors in general, sensors

the size and shape of a human fingertip are extremely difficult to produce (and
apply). In our experience such fingertip sensors are still unreliable and coarse in
measurement. Consequently, other sensory sources have to be exploited. A suit-
able means is visual control as miniature cameras and image processing hardware
are easily available. Our approach is therefore to supplement fingertip sensing
by a visual check of the points where the fingers touch the object.
In this contribution we deal with the evaluation of images captured by a hand

camera which can see the grasped object and the fingertips. I.e., the object has
been grasped already – this can verified by sensors –, but it is still unknown
how stable the object is held. Evaluating this “grasping situation” is a challenge
to computer vision since it is not a classical classification or pose estimation
task but instead a complex situation has to be judged. Moreover, the relative
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Fig. 1. The three-fingered hydraulic hand holding an object. A camera in mounted in
front, looking at the object and the fingertips.

fingertip positions on the object are sometimes even difficult to see for humans
(Fig. 2). In our approach, these problems are solved defining typical success- or
failure-situations known from robotic experience as classes for a neural classifier,
thus achieving a qualitative judgement on the situation.

2 The Robot Setup

Our system is based on a standard industrial robot arm (PUMA 500) with six
degrees of freedom. The end-effector is an oil-hydraulic robot hand developed by
Pfeiffer et al. [10]. It has three equal fingers mounted in an equilateral triangle,
pointing in parallel directions (Fig. 1). Each finger has three degrees of free-
dom: bending the first joint sideways and inward at the wrist, and bending the
coupled second and third joint. The oil pressure in the hydraulic system serves
as a sensory feedback. A detailed description of the setup can be found in [7].
Fig. 1 shows also a force/torque wrist sensor which will not be used in these
experiments.
Currently the robot system is used within a man-machine interaction scenario

where a human instructor tells the robot to grasp an object on a table. An active
stereo camera head apart from the robot detects the hand movements of the
instructor as well as the objects. The world coordinates of the indicated object
are given to the robot system as soon as a pointing gesture could be detected.
The robot arm then carries out an approach movement until the hand camera
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detects the object to control the final approach. The object is then grasped by
the three-fingered hand. This system is described in [11].
Up to recently, the only feedback on the success of the grasping movement was

the sensed hydraulic oil pressure. By this data, however, it can only be judged
if the object is still in the grasp or if it was lost. Though there are additional
position sensors on the hydraulic motor pistons, these position measurements
cannot be used to estimate the resulting finger positions within the required
accuracy due to mechanical hysteresis.
Consequently, a supplementary system has been developed which checks the

grasping position visually using the hand camera. We will first characterize the
task of this system by some examples. Fig. 2 shows a cube shaped object with a
hole at each side in the grasp of the hand. The row above shows as an overview
the hand from the side, below are the corresponding views of the hand camera.
Besides checking if the object is in the hand at all, the questions relevant to
robotics which the hand camera should answer are the following:

1. In which position or pose is the object?
2. Which of the fingertips have supporting contact?

It should be noted that both these questions can only in part be answered in
general, like that e.g. three contact points give usually more stability than two.
However, whether a certain fingertip position does really support the object
or not depends on the type of the object. Similarly, the absolute position of
the object held in the hand is not necessarily relevant for all tasks. Whether a
position is useful depends on the further proceeding, e.g. putting the object down
or attaching it to other objects. Therefore, object and task specific knowledge
must be introduced by defining appropriate judgement-classes to be trained by
the recognition system. This will be outlined in section 4.

3 Visual Recognition System

The recognition system for the hand camera is composed of two modules (left
and right in Fig. 3): (a) a simple location module to find the fingertip regions and
(b) a classification module (VPL-classifier, section 3.3) of which two instances
(VPL1 and VPL2) are used: one for the classification of the grasped object and
one for the evaluation of the three fingertip regions.
Image processing is carried out on two resolutions (images I1 and I2, not

shown in Fig. 3): The camera input is a grey level image sub-sampled to 192×144
pixels (image I1), which is used as input for the classifier. I2 is an even further
sub-sampled version of the camera image of 96 × 72 pixels, it is used for ROI
selection.

3.1 Locating the Robot Fingertips

In order to keep ROI selection as simple and fast as possible, we use black
background and the robot fingers are covered with white tape. The objects have
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Fig. 2. Three grasping positions, above view from the side, below view of the hand
camera. Left: Object held correctly by all three fingers. Middle: Object held only by
two fingers (left finger has lost its grip) but still stable and in similar position like
(Left). Right: Like (Middle), but object in a different position. Note how small the
differences appear from the position of the hand camera.

intensity values between those of the background and the fingers, thus the finger-
regions can be found by a simple intensity based binarization: Starting with a
high threshold ϑ = ϑstart (≈ finger intensity) on image I2, ϑ is decreased until
three blobs of a minimum size and a priori defined form features can be found
by a connectivity analysis of the binarized image. Since the fingers are brighter
than both objects and background, it is made sure the three blobs correspond
to the fingers.
To locate the fingertips, the centers of gravity Ci, i = 1, 2, 3 and the second

moments of the blobs are calculated. Starting from the Ci, pixels are tested
along the major axis towards the image center until the first non-blob pixel is
encountered, thus fingertip i is reached. Of course, this procedure is highly special
purpose but justified by the computational speed. It could be easily replaced
by other localization methods as e.g. Eigenspace projection (“Eigenfingertips”).
However, the localization is not the main topic of this paper.

3.2 Windows for Classification

Four classifications have to be carried out to get the full information on the scene
under the robot hand: VPL1 classifies a 65× 65 window of I1 centered between
the fingertips at C = 1/3

∑
i Ci. The result is the identity and position of the

object.
VPL2 classifies three windows of size 45× 45 from I1 independently of each

other, which are centered at the fingertips. The size is chosen such that a part
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of the finger is included as well as a part of the object. Thus the window pro-
vides information on the fingertip position, the contacted part of the object, the
object position and the relative fingertip-object position. This is the basis for
a judgement on the type of “grasping situation” by the classifier. The choice
of a set of such prototypical grasping situations is crucial for the performance
(section 4).

3.3 VPL-Classifier

The classifier is a trainable system based on neural networks which performs a
mapping x → y,x ∈ IRM ,y ∈ IRN . In this case, the input dimension M is the
number of pixels of the windows. The window vector x has to be mapped to a
discrete valued output k that denotes the class. There is one separate output
channel for each of theN output classes. Training is performed with hand-labeled
sample windows xTr

i and binary output vectors yTr
i = δij , i = 1 . . . N , coding

the class 1 ≤ j ≤ N . Classification of unknown windows x is carried out by
taking the class k of the channel with maximal output: k = argmaxi(yi(x)).
The VPL-classifier combines visual feature extraction and classification. It

consists of three processing stages which perform a local principal component
analysis (PCA) as feature extraction followed by a classification by neural expert
networks. Local PCA can be viewed as a nonlinear extension of simple, global
PCA [13]. “VPL” stands for the three stages: Vector quantization, PCA and
LLM-network. The vector quantization is carried out on the raw image windows
to provide a first data partitioning with NV reference vectors ri ∈ IRM , i =
1 . . . NV . For vector quantization the Activity Equalization Algorithm is used,
which is an extension of the well-known “winner takes all” method that prevents
node under-utilization by monitoring the average node activities. [3].
To each reference vector ri a single layer feed forward network for the suc-

cessive calculation of the principal components (PCs) as proposed by Sanger
[12] is attached which projects the input x to the NP < M PCs with the
largest eigenvalues: x → pl(x) ∈ IRNP , l = 1 . . . NV . To each of the NV different
PCA-nets one expert neural classifier is attached which is of the Local Linear
Map – type (LLM-network), see e.g. [4] for details. It does the final mapping
pl(x) → y ∈ IRN . The LLM-network is related to the self-organizing map [8].
It can be trained to approximate a nonlinear function by a set of locally valid
linear mappings.
The three processing stages are trained successively, first vector quantiza-

tion and PCA-nets (unsupervised), finally the LLM-nets (supervised). Classifi-
cation of input x is carried out by finding the best match reference vector rn(x),
then mapping x → pn(x)(x) by the attached PCA-net and finally mapping
pn(x)(x)→ y.
The major advantage of the VPL-classifier is its ability to form many highly

specific feature detectors (the NV · NP local PCs), but needing to apply only
NV +NP − 1 filter operations per classification, thus large object domains can
be represented and detected without the need of many (and computationally
expensive) filter operations. The VPL-classifier has been successfully applied
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Fig. 3. System architecture. Left: From the input image the regions of the fingers
can be easily segmented and the fingertips located (section 3.1). Around each fingertip
a window is cut out of the input image (section 3.2). The three windows are fed to
the VPL-classifier which classifies the “grasping situation” for each fingertip separately
(section 3.3).

to several vision tasks, for details see [4]. Especially it could be shown that
classification performance and generalization properties are well-behaved when
the main parameters, i.e. NV , NP and the number of nodes in the expert LLM-
nets NL are changed.

4 Results

VPL1 classifies the NO different objects and additionally up to NQ qualitatively
different classes for the position, so the VPL output dimension is N = NO+NQ.
Fig. 4 shows typical grasping situations in which the object position matters
most: The first two situations (from left to right) are stable (classes 1,2). The
third is unstable though all fingers touch the object because the object can fall
out of the grasp to the right (class 3). The fourth is an unstable version of the
first (object tilted, class 4). So there are four position classes for this object.
VPL2 needs not to be evaluated.
By contrast, Fig. 2 shows an object where the stability of the grasp cannot

be easily derived from the object position. Hence, after recognition of the object
type by VPL1, the “grasping situation” on the fingertips has to be judged by
VPL2. The left and right fingers are in a correct position in all three situations,
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Fig. 4. Typical grasping situations in which the object position is decisive for grasp
stability. Above view from the side, below the same situations as seen by the hand
camera. From left to right: (1,2) stable position, (3) unstable though all fingers touch
the object because the object can fall out of the grasp to the left, (4) unstable version
of the (1), since object is tilted.

but the middle finger is lose in the second and third scene due to too strong
bending. Note this causes a noticeable tilt of the object only in the third situa-
tion, not in the second (in the view of the hand camera!). So this object needs
two classes for VPL2: finger correct / above.
We used in total NV PL1

O = 5 objects with up to NV PL1
P = 4 position classes

for VPL1. Note the definitions of the position classes differ from object to object,
also there may be fewer classes than NV PL1

P . The architecture could be refined
by using one VPL to classify the object type and then select another VPL
specialized to the position classes of this one object. But the current scenario is
simple enough to be covered by a single VPL1. For VPL2, NV PL2 = 5 classes
were used to judge the position of the fingertips relative to the objects: “correct”,
“below”, “above”, “right” and “left”.
The system was tested on a series of 60 images using the “leaving one out”

method. For VPL1, NV = 3, NP = 6, NL = 9 proved to be sufficient to reach
a rate of 96% correct classifications. For VPL2, with NV = 4, NP = 8, NL =
20 88% correct classifications could be reached. The slightly larger nets (as
compared to VPL1) and the lower classification rate reflect the greater number of
degrees of freedom since the views of the fingertips are from different directions.
Moreover, there are partial occlusions and overshadowing.

5 Discussion and Acknowledgement

A system for the qualitative visual judgement on the success or failure of a
grasping action of a robot hand was presented. As the judgement has to provide
information that can be used for further robotic actions, a set of “grasping
situations” was defined for each object. Still, the number of objects and grasping
situations is small. As we will get more images and more complex scenes, the
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architecture will have to be enlarged by a single object classifier which activates
specific object-position– and fingertip-position– classifiers individual for each
object. Moreover, in the future sensor fusion between visual and oil pressure
data will have to be developed.
This work was supported by the Deutsche Forschungsgemeinschaft (DFG)

within research Project SFB 360 “Situated Artificial Communicators”.
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