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ABSTRACT

Learning of classifiers to be used as filters within the analytical rea-
soning process leads to new and aggravates existing challenges.
Such classifiers are typically trained ad-hoc, with tight time con-
straints that affect the amount and the quality of annotation data
and, thus, also the users’ trust in the classifier trained. We ap-
proach the challenges of ad-hoc training by inter-active learning,
which extends active learning by integrating human experts’ back-
ground knowledge to greater extent. In contrast to active learning,
not only does inter-active learning include the users’ expertise by
posing queries of data instances for labeling, but it also supports
the users in comprehending the classifier model by visualization.
Besides the annotation of manually or automatically selected data
instances, users are empowered to directly adjust complex classifier
models. Therefore, our model visualization facilitates the detec-
tion and correction of inconsistencies between the classifier model
trained by examples and the user’s mental model of the class defini-
tion. Visual feedback of the training process helps the users assess
the performance of the classifier and, thus, build up trust in the filter
created. We demonstrate the capabilities of inter-active learning in
the domain of video visual analytics and compare its performance
with the results of random sampling and uncertainty sampling of
training sets.

Index Terms: H.3.3 [Information Systems]: Information Storage
and Retrieval—Information Search and Retrieval; I.2.6 [Computing
Methodologies]: Artificial Intelligence—Learning

1 INTRODUCTION

Reduction of data to its relevant parts is a central and recurrent step
of the visual analytics process, as outlined in the visual analytics
mantra [17]: “Analyse First – Show the Important – Zoom, Filter
and Analyse Further – Details on Demand”. Such reduction is crit-
ical for data scalability and is performed by automatic methods or
user-defined filters. While automatic methods reduce the amount of
data by exploiting some structure or by calculating predefined fea-
tures and statistics, filters serve as their equivalents in human visual
information seeking. Filters are involved in both exploratory inter-
action to reduce the amount of data displayed and to focus on the
details (e.g., by dynamic queries [29]) and in confirmatory interac-
tion to confirm or refute hypotheses about the data (e.g., in video
visual analytics [15]). Typically, users define filters by providing
model parameters or examples of data instances they want to be
included in, or excluded from, their query.

We focus on the question how filters can be efficiently defined.
This question arises especially when analyzing complex and high-
dimensional data spaces, where appropriate model parameters are
unknown and filter definition by a single example is too weak. In
such cases—we will use the examples of data and tasks from video
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visual analytics throughout the paper—query by multiple examples
can be useful, which is identical to the training of a complex clas-
sifier. In this way, users can specify what they seek by integrat-
ing machine learning techniques into information visualization, as
commonly recommended (e.g., by Shneiderman [30] or Chen [6]).
However, in contrast to pre-trained classifiers as they are widely
used in video analytics (e.g., person or car detectors, included in
many video management systems), classifiers used to define filters
within the visual analytics process have to be trained ad-hoc.

Such ad-hoc trained classifiers for filtering are required within
the sense-making loop of analysts [35], when they build a case or
search for support or evidence for a hypothesis within the data. Let
us consider the example of video surveillance operators who as-
sume, after some initial analysis of video sequences, that a cyclist
might have been involved in the case of a traffic incident they deal
with. Hence, they want to extract cyclists from video data to reduce
the amount of video and to focus on promising parts for hypoth-
esis verification. This example illustrates the need for training of
new and arbitrary classifiers that can also be highly complex and
specialized (e.g., hand-waving bicyclists with red helmets may be
important in our example scenario). Since pre-trained instances of
such classifiers are generally not available, the analysts have to de-
fine the filter by themselves. However, feature selection and model
parameter definition for objects such as a bicyclist are too complex
to be manually defined, even for domain experts with support by
interactive visualization [43]. Hence, filter definition via query by
examples promises to be the only viable solution.

In contrast to traditional supervised training of a classifier, ad-
hoc training involves new challenges:
Annotation Costs: Data annotation is a very costly task because
a large amount of annotated data is required for proper training of
a classifier. Furthermore, the data has often to be annotated by do-
main experts in a time-consuming process. These facts question the
benefit of ad-hoc training of filters within the analytical reasoning
process. In addition, the issue of decreasing analysis performance
arises if disruption that comes with high time consumption for train-
ing influences the analysis process. Finally, to find appropriate ex-
amples that can be labeled tends to be a difficult task that becomes
worse with the rareness of the data instances queried (imagine the
search for hand-waiving cyclists with red helmets).
Annotation Quality: A typical phenomenon of positive example
selection in ad-hoc training scenarios is that the provided data in-
stances are not sampled as independent and identically distributed
random variables from the query distribution, as required by the
learner. In fact, users tend to provide samples drawn from a rather
small region in data space. This effect obviously increases with the
rareness of suitable examples in the data: if a hand-waiving cyclist
was found, he will be annotated in all frames of the video. Although
this approach provides multiple training examples, the training set
itself is very specialized and may not generalize to all instances of
the intended query (e.g., all hand-waiving cyclists). Furthermore,
the quality of annotated examples is affected by the often vague
idea of the query the users have in mind when defining the filter.
The question of the exact range of the data instances of interest
may arise (e.g., is a person on a trike also of interest?). This issue is
further intensified in data domains where no clear data instances are
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Figure 1: (a) Data flow of passive supervised machine learning. A training set (data + large amount of labels) is provided to the learner, either as
a monolithic set (batch learning) or in many smaller pieces (online learning). (b) In active learning, a bootstrapped learner iteratively refines itself
by posing queries from a pool of unlabeled data U to a (human) oracle that provides labels for the data L. Inter-active learning is an extension
(red arrows) of active learning that further allows the human experts to directly integrate their background knowledge into the model.

predefined. For example, we encounter the question how a data in-
stance should be defined in object or event detection for video anal-
ysis: is the object silhouette the right way to crop the example from
the video frame or can we use a bounding rectangle to define the
image region, and if so, does the precision of the rectangle affect
the filter performance? Such questions will not arise in domains
where precisely defined documents are available, as it is the case
in text document retrieval or content-based image retrieval. These
issues especially arise in the ad-hoc training context. We will refer
to them by the term annotation noise (see Fig. 2).
Classifier Quality Assessment: A general question in machine
learning is to detect the appropriate moment when to stop train-
ing of a classifier. The classifier should well adapt to the training
data, but be general enough to correctly classify unseen data in-
stances, too. This overfitting issue is traditionally tackled by cross
validation. However, this approach requires either much more an-
notated examples for a validation set or much more time, since mul-
tiple classifiers have to be trained on different subsets of the training
set. Furthermore, the generalization assessment of the classifier by
cross validation is limited by the sampling bias induced by ad-hoc
annotation (cf. annotation quality). Thus, cross validation is hardly
feasible and often undesired in the ad-hoc training context. A ques-
tion related to the stopping criteria in training is the question of
stopping criteria in annotation of examples. This issue is of practi-
cal relevance because annotation involves costs. However, often no
appropriate measure of training progress is available that facilitates
the definition of such stopping criteria [36]. Finally, quality assess-
ment of the classifier becomes important to ad-hoc training because
the users have to develop trust in their defined and applied filters.
Hence, it is important to them to judge their classifier’s performance
when it is faced with unseen data or noisy data.

Training of a classifier under the constraint of high annotation
cost is tackled by the field of active learning. In contrast to tradi-
tional supervised machine learning (see Fig. 1 (a)), an active learner
is allowed to choose the data from which it wants to learn. This
way, typically greater accuracy can be achieved with fewer train-
ing labels. As depicted in Fig. 1 (b), active learning is an iterative
process of refinement in which the learner may pose queries of un-
labeled data to an oracle (e.g., a human) that provides the labels for
this data. The active learner typically queries labels for the data
instances with the highest informativeness or those that promise
to reduce uncertainty most. Settles [27] and Olsson [21] provide
an introduction and comprehensive overview of the field of active
learning. For a survey of the application of active learning for mul-
timedia annotation, we refer to Wang and Hua [41].

Theoretical analysis has shown that an active learner (however,
a computationally complex query-by-committee approach) can re-

duce the complexity of required labels in exponential order [10].
Empirical analysis reveals that in the majority of applications, ac-
tive learning is able to reduce the amount of labels [27], too. A sur-
vey of the usage of active learning for text annotation exhibits that
the expectations of most practitioners on the performance of active
learning are either fully (36.3%) or partially (54.4%) met [36]. The
reduction of examples to label in practical situations, however, may
lie far behind exponential decrease and, dependent on the dataset,
sometimes does not show any improvement at all [24]. Further,
some authors report negative results [11, 13] or show that the per-
formance depends on the expertise of the annotator [2].

Due to these results and the further challenges that we face in
the context of ad-hoc training, we question whether active learning
alone is suitable for ad-hoc training and capable of meeting the tight
time constraints existing in this application. Furthermore, we ques-
tion the idea of the human experts as mere annotators, but believe
that their expertise should be utilized in a more direct way.

In this paper, we introduce a novel method called inter-active
learning, an extension to conventional active learning that directly
involves human experts in the ad-hoc training process using the vi-
sual analytics methodology. The additional interaction introduced
by inter-active learning is depicted by red arrows in Fig. 1 (b): the
goal of this process is to efficiently create filters leveraging the com-
plementary strengths of human and machine, as outlined by Bertini
and Lalanne [4] in the context of the knowledge discovery process.

In detail, inter-active learning efficiently approaches the goal of
a well-trained classifier by iterating over the three basic steps: i) as-
sessment of the performance of the classifier, ii) annotation of data
instances and/or manipulation of the classifier model, and iii) re-
training of the classifier. In Section 3, we will break down these
basic steps into different tasks the users perform in each cycle to
incorporate new background knowledge into the trained model.

This paper contributes to the current state of research by present-
ing a way how the problem of ad-hoc training of classifiers for in-
teractive filter definition can be tackled by visual analytics. Besides
introducing a general methodology, which can be considered as an
extension of active learning methods toward increasing leverage of
the users’ expertise, we apply inter-active learning to the domain
of video analysis for validation. We present an integrated visual
analytics system that covers the three steps of inter-active learning
and provides an adaption to online learning of the cascade classi-
fier model we use, as well as visualization and interaction models
that can cope with the complexity, high dimensionality, and huge
amount of data of the video domain. A usage scenario illustrates
the different tasks the users carry out within the three steps and fur-
ther provides validation of our method by comparison to classifier
training with random sampling and uncertainty sampling.
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2 RELATED WORK

Our approach is related to techniques from visual analytics, knowl-
edge discovery, data mining, information visualization, and ma-
chine learning. Closely related is previous work by Seifert and
Granitzer [25], Seifert et al. [26], May and Kohlhammer [18], and
Heimerl et al. [14]. All four methods aim at tight integration of
the user into the labeling process. The first work [25] presents a
user-based and visually supported active learning method that was
successfully validated on different multi-class datasets of various
data domains. Seifert et al. [26] focus on visual classifier perfor-
mance assessment, while the learner can be adapted by labeling
data instances in an information landscape visualization. Valida-
tion is provided by means of a multi-class, multi-label text classifi-
cation scenario. May and Kohlhammer [18] also allow the user to
refine a classifier model by selection of training examples. They fo-
cus on performance feedback of the classifier model using a visual-
ization that facilitates pre-attentive pattern identification. Recently,
Heimerl et al. [14] have introduced a system to interactively train
a support vector machine model for text document retrieval based
on visual analytics and active learning. Further, they provided a
thorough evaluation of their approach. However, all four methods
do not go beyond interactive definition of the training set and user
selection of the data instances to label. More direct integration of
human experts’ background knowledge is not considered.

There are several approaches of interactive definition of clas-
sifiers (e.g., [1, 8, 32, 34, 43]), that do not consider support of
(semi-) automatic methods for classifier refinement, such as active
learning. Although these methods were successfully applied to train
or combine classifiers, purely user-based definition of classifiers
seems only to be viable for problems with low complexity [43]; oth-
erwise, they annoy the users by recurring tasks [32]. Furthermore,
interactive definition often constrains the complexity of the classi-
fier model; hence, decision trees typically appear in these works.

Another approach incorporating the users’ background knowl-
edge into the training process is followed by the active learning
community. In the domain of text classification, where features of-
ten coincide with words, promising methods were developed that
allow the learner to pose queries to the oracle to label features,
instead of just data instances [28, 31]. This means that the ora-
cle can tell the learner if a particular feature describes a particular
class well. However, feature labeling can only be applied in ar-
eas where features are tangible to human users (e.g., word features
in text classification). Thus, such methods are not applicable in
complex and abstract problem environments in which features do
not exhibit any concrete symbolic meaning to humans. Besides the
methods that incorporate human decisions in machine learning, vi-
sualizations of classifier models for performance assessment and
model understanding, such as [3, 5, 19], are naturally related to our
approach. In contrast to the existing approaches, we advance the
fields of active learning and visual classifier definition by combin-
ing them to a visual analytics process called inter-active learning.

3 INTER-ACTIVE LEARNING

In this section, we outline the theoretical considerations of inter-
active learning and specify its requirements for learning models,
visualization, and interaction.

Inter-active learning re-formulates the problem of supervised
machine learning as a visual analytics problem. Supervised ma-
chine learning for classification, as depicted in Fig. 1 (a), seeks to
find model parameters m that minimize the class confusion error E
(according to the distance function ferror) of the classifier function
hm : S→ T , which maps the data distribution S to a set of target
classes T = {0,1, · · · ,n}:

E = ∑
i∈I

ferror(hm(si), li)

Here, a training vector of data/label pairs (si, li) is provided, where
data samples si are drawn as independent and identically distributed
random variables from S and data labels li =L (si) are given by the
labeling function L ; I denotes the set of sample indicies. We do
not consider any further regularization terms, such as smoothness
of the function.

In contrast to passive supervised learning, active learning addi-
tionally minimizes the costs C = ∑i∈I C (L (si)) that arise by ac-
quiring a finite set of labels li. Active learners are allowed to pose
query of data instances to be labeled to the users. The decision
which data has to be labeled for the next training cycle depends
on the current model m, the available data instances si ∈ U, and
the labeling costs. Active learners typically assume a uniform cost
function C (i.e., C = |I|) and thus query labels for the most infor-
mative data instances from the users. This process is illustrated for
a pool-based active learner in Fig. 1 (b) (ignoring the red arrows).

Inter-active learning, as an extension to active learning, pursues
the same objective: a well-trained classifier trained with minimal
labeling costs. In contrast to active learning, inter-active learning
assumes that the users—based on their expertise of the domain and
their knowledge about m—are able to select a more effective set
of data instances to be labeled. Further, the training process can
benefit from direct modifications of the learner model m. In high-
dimensional data domains with complex dependencies, however,
direct definition of model parameters can be difficult [43]. Hence,
we focus on permitting the users to detect and solve contradictions
between their domain knowledge and the actually trained model m.
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Figure 2: Major components and information flow involved in the
inter-active learning process. Solid lines depict information conveyed
to the users by visualization, dashed lines represent user interaction,
and dotted lines illustrate the flow of information triggered by auto-
matic methods. Furthermore, the contribution of noise-affected data
and labels to the model’s uncertainty is depicted.

Due to the tight connection between learner and user, visualiza-
tion and human-computer interaction are, besides automatic meth-
ods, the central aspects of inter-active learning. Figure 2 illustrates
this connection between the three major elements: learner model,
user, and data. Furthermore, Fig. 2 depicts the flow of informa-
tion between the three elements that can be assigned to one of the
three category of methods: visualization, interaction, or automatic
method. The iterative interaction of these three components results
in a visual analytics process that aims to refine the classifier model
and its comprehension by the users.

Each cycle of this iterative process consists of three steps men-
tioned before: i) assessment of the model performance, ii) refine-
ment of the classifier model, and iii) retraining of the classifier. The
first two steps, which include user interaction, can further be di-
vided into tasks the users may consider to process each cycle. For
the first step, these tasks include assessing the success of the last
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training cycle (training feedback) and determining if a stopping cri-
terion was reached (e.g., the model has already reached an appro-
priate level of quality or training does not improve the model any-
more). Furthermore, by assessing the model’s performance, users
can build trust in their trained model and learn to know its strengths
and weaknesses. Hence, they can incorporate the performance and
uncertainty of “their” filters into their decisions within the analyt-
ical reasoning process. Finally, quality assessment also guides the
users in refining the model. Users may detect overfitting of the
model, low robustness to noise, or lack of generalization. These
issues are tackled in the second step of a cycle.

After the classifier model was analyzed in the first step, two types
of refinement are available to the users in the second step: data an-
notation and model manipulation. While both data annotation and
model manipulation can be used to broaden the classifier model to
accept a wider variety of data instances or to narrow the accep-
tance range, we recommend using model manipulation mainly for
generalization purposes; in contrast, data annotation is suitable for
both tasks. This recommendation accounts for the complex depen-
dencies of high-dimensional data distributions. In such cases, it is
often easier to tell the system what is wrong (e.g., overfitting of the
model) than to define what is right. For data labeling, the users can
choose which data regions they intend to annotate for model refine-
ment. In this way, the users can efficiently integrate novel domain
knowledge into the system. Labeling of data in regions near the de-
cision boundaries helps increase the classifiers confidence, whereas
labeling of data in regions far away from the decision boundary
helps explore new regions of the data space and might reduce ex-
tensive class confusion. However, users can also rely on the classi-
fier model to provide the most beneficial data instances for labeling
utilizing active learning.

In the next sections, we introduce the main components of a
visual analytics system for inter-active learning and explain their
application for the tasks mentioned above. These components in-
clude, besides different (coordinated) views on the data and model,
also the definition and implementation of an appropriate classifier
model. Furthermore, we will address issues of scalability and input
noise that affects the trained model.

4 CLASSIFIER REQUIREMENTS

In this section, we describe the requirements for a learner for ad-
hoc training in general and the classifier model we use for video
visual analytics in particular.

Filters generated by ad-hoc training have to be of low time com-
plexity because such filters are often used to facilitate scalability
with increasing data size. In this paper, we use a cascade of clas-
sifiers (Fig. 3 (b)) to predict class assignments of sliding windows
in each video frame. In combination with a set of basic, yet fast to
compute, rectangle features, this method has become popular with
the work of Viola and Jones [39] in the context of face detection.
Rectangle features (Fig. 3 (a)) operate on gray-value images and are
computed by subtracting the sum of pixel values of the black part
from the sum of pixels of the white part.

Similar to Viola and Jones, we also use a committee of thresh-
olded rectangle features as weak classifiers within each node of
the cascade. The features for each node are typically selected and
weighted by some boosting algorithm, such as AdaBoost [9]. The
high efficiency of the cascade during evaluation of sliding win-
dows (various rectangular cropped parts of the video frame) re-
sults from the low complexity of the first nodes. With only few
computations, the first node already rejects about half of all sliding
windows; the complexity and number of features typically increase
with each node. Sliding windows that pass all nodes in the cascade
are considered detections (Fig 3 (b)), such as the sliding window in
Fig 3 (a), which contains a person onto whom the rectangle feature
selected is superimposed and aligned by boosting. This often ap-
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Figure 3: (a) Six prototypical rectangle features and a cropped part of
a sliding window containing a detected person onto whom one of the
rectangle features superimposed. (b) Each node of the cascade of
classifiers makes a binary decision on the sliding window: whether it
is dropped or processed by the next classifier node. Sliding windows
that process the whole cascade are considered to be detections.

plied approach only distinguishes between sliding windows that are
“detected” by the cascade or not, hence it defines a binary classifi-
cation problem. If not stated otherwise, the parameters we use for
our cascade of classifier are derived from the original work of Viola
and Jones [39].

As reported by Tomanek and Olsson [36], it is critical for in-
teractive refinement of classifiers that retraining can be performed
very fast to keep the idle time of users at an acceptable level. Fails
and Olsen [8] even claim that, in order to be effective, the classifier
must be generated from the training examples in under five seconds.
These requirements also apply to inter-active learning. Hence, most
training algorithms are not suitable for inter-active learning because
they tend to need several hours of time for learning the model based
on a huge set of labeled data. However, by retraining the classifier
with only the samples the users labeled in the current cycle, we
can meet the efficiency requirements. Methods that can iteratively
update the model according to newly provided data/label pairs are
called online training methods.

In this paper, we use a modified version of online AdaBoost, in-
troduced by Oza [23]. Since in online training, the learner is faced
with only one example a time, the basic idea of online boosting is to
maintain statistics for each feature that capture its performance his-
tory for all the samples seen so far. This, however, implies that
greedy selection of features cannot consider the complete set of
examples when choosing a particular feature, since future exam-
ples are not available. Hence, the performance of online AdaBoost
approaches the performance of batch-mode training in the limit.
Based on the introduced statistics, an estimated error ei can be cal-
culated for each weak classifier. A weak classifier hweak

i is built
from a rectangle feature i that is thresholded after evaluation to ob-
tain a binary decision (i.e., hweak

i ∈ {−1,1}); hence, we use the
terms feature and weak classifier interchangeably.

A subset of all available weak classifiers is selected by the greedy
boosting algorithm according to the lowest error to form a strong
classifier hstrong. The binary decision about the class assignment of
each sliding window s is made in each node of the cascade by its
respective strong classifier hstrong. Therefore, the weighted sum of
binary responses of all n boosted weak classifiers that belong to the
strong classifier and threshold t are used:

hstrong(s) = sign(conf(s)− t)

conf(s) =
n

∑
i=1

aihweak
i (s) (1)

ai = log
(

1− ei

ei

)
AdaBoost lives on rating the importance of each example for train-
ing (a correctly classified example is of lower importance than an
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incorrectly classified one). Online AdaBoost estimates the impor-
tance of an example for each feature based on the binary decisions
of the preceding weak classifiers. According to the estimated im-
portance, the history maintained by each feature is influenced.

Training of a node means to adjust the thresholds, weights, and
history of all features. The approach of Oza only uses a fixed num-
ber of features. We improve on this by integrating the idea of Grab-
ner and Bischof [12]. They use selectors to dynamically choose the
committee of weak classifiers with the best performance out of a
number of features that are constantly trained. In this way, chang-
ing number of features also becomes possible.

Each strong classifier of the cascade is trained with a modified
version of this online AdaBoost algorithm. The main improvements
we make to the method of Grabner and Bischof affect the statis-
tics maintained for each strong classifier. By introducing two his-
tograms (one for the positive and one for the negative examples) of
the conf measure (see Equation (1)), we enable a cascade construc-
tion that is similar to the original algorithm by Viola and Jones. Us-
ing the histogram of confidences of positive training examples, the
true positive rate can be adjusted to match the classification goals
of a node by decreasing the threshold t to an appropriate level. The
false positive rate is then accessible by the confidence histogram of
negative examples, by summing up the bins between one and the
currently chosen threshold. After the cascade node was trained by
an example, either the former or the latter histogram, is updated (de-
pending on the label of the data example) by increasing the particu-
lar bin by α . Finally, the histogram is normalized to one. The con-
stant α controls the decay rate that is necessary because the stored
confidence values become outdated by training. In our examples,
we use an experimentally derived value of α = 2/η , with η being
the number of samples seen so far.

To increase robustness for imbalanced numbers of positive and
negative training examples, we modify the boosting algorithm to
optimize the distance between the receiver operating characteristic
(ROC) of the node’s classification history and the point of optimal
classification (i.e., TPR= 1, FPR= 0), involving calculation of true
positive rate (TPR) and false positive rate (FPR) of each weak clas-
sifier. New nodes are added to the cascade until the maximum error
rate FPRoverall > FPRoverall = ∏

m
k (FPRk) is met. For our experi-

ments, we choose an maximum error rate consistent with Viola and
Jones [39]: FPRoverall = 10−5. Finally, we enable the users to mod-
ify the cascade, by adding new features (user-defined features) to
a node or changing the position or shape of features that were se-
lected by the algorithm.

5 ACTIVE LEARNING

When users lack the knowledge which data instances are most effi-
cient to label, they can use active learning. Pressing a button, they
automatically obtain a selection of data instances for which the ac-
tive learner is most uncertain. The selection is shaped by a pool-
based uncertainty sampling approach. For the cascade of classifiers
we use, uncertainty u about the true label of a sliding window s
corresponds to a sum of confidence (Equation (1)) values of all m
nodes involved in making the class decision:

u(s) =
1

∑
m
k=1 confk(s)

(2)

This is equivalent to the definition of confidence by Visentini et
al. [40] and Graber and Bischof [12]. The most uncertain data in-
stances will be selected to be further analyzed by the users.

6 VISUALIZATION AND INTERACTION

In this section, we introduce the different views and interaction
technique of our inter-active learning framework. The screenshot
of the workspace depicted in Fig. 4 shows the three main areas of

the graphical user interface (GUI). Left, we see the trained classifier
model (Fig. 4 (b)) and the cascaded scatterplot (Fig. 4 (a)) showing
the evaluation results of the cascade for performance assessment.
On the right, three different views on the model and data are avail-
able for annotation and model modification, which are used in the
second step of each training cycle. In-between both GUI areas,
the current selection of data instances, cascade nodes, and features
is shown (Fig. 4 (c)). The selections connect the performance as-
sessment step with the refinement step and, in this way, provide a
natural arrangement of tasks. For interpretability, a distinct color is
assigned to each type of selection. This color is used to highlight
the selection in each of the coordinated views.

6.1 Cascaded Scatterplot
To present the feedback on the quality of the current classifier, we
introduce a novel visualization of the class distribution of data in-
stances (sliding windows of the video) in each stage of the classi-
fier. This visualization, which we call cascaded scatterplot, inte-
grates multiple dependent scatterplots that are horizontally aligned
to match with the cascade information (Figs. 4 (a) and (b)).

In the cascaded scatterplot, the abscissa is divided into m parts,
with m being the number of nodes in the cascade. In contrast to
conventional scatterplots, cascaded scatterplots represent each data
point up to m times. Coordinates of a data point in the cascaded
scatterplot depend on the classification quality of the sliding win-
dow s by the respective strong classifier (cascade node). The x-
value of each instance of a data point is made up of an integer
value that determines its assignment to a cascade node as well as of
a fractional part that represents the confidence of each classifier’s
decision on the data point. Hence, data points of two classifiers
cannot overlap in their x-value. For each data point and classi-
fier, we plot the normalized confidences (distance to the decision
boundary on the x-axis) ck(s) ∈ [−1;1] against the feature robust-
ness rk(s) ∈ [0;1] (y-axis) for each node Nk.

The robustness rk(s) of a feature decision is influenced by two
components: the robustness of the feature weights rweight of each
node with nk features, and the distance between the feature response
of the signal and the threshold of the feature (its decision boundary)
rmargin. Together, the feature robustness rk(s) = rweight

k rmargin
k (s) in-

dicates the reciprocal of the influence of signal noise on the decision
of the strong classifier Nk. The robustness of the feature weights
rweight
k utilizes the normalized entropy of the feature weights ai to

penalize the skew of weight distribution to a small amount of huge
weights because in this case, the decision of a node may be changed
only due to the flipping a couple of its features’ decisions:

rweight
k =− ∑

i∈Nk

ai log(ai)

log(nk)

Data instances with a small distance between their feature response
and the feature’s threshold are likely to flip the weak classifier’s
decision in the presence of noise. Therefore, rmargin

k includes the
average distance (normalized to the maximum margin of the fea-
tures) between the features’ decision boundaries ti and the signal’s
response to each feature fi(s):

rmargin
k (s) =

1
nk

∑
i∈Nk

|ti− fi(s)|
maxmargini

The feature robustness is shown along the y-axis of the scatterplot
and helps the users judge the classifiers sensitivity to data noise that
influences the general quality of the model. On the x-axis, the un-
certainty of the class assignment is shown by the distance of the
data points to the decision boundary of each strong classifier in the
cascade. The confidence measure ck(s) is normalized to the range
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Figure 4: Typical workspace of our visual analytics system for inter-active learning after learning with a couple of training examples: (a) cascaded
scatterplot, (b) cascade information, (c) selection interface, (d) video context view, (e) visualization of classifier model, (f) annotation view. Details
of the components can be found in Section 6.

of [−1,1], where ck(s) =−1 and ck(s) = 1 represent confident de-
cisions, either negative or positive according the class membership
of the data instance:

ck(s) =
confk(s)

∑i∈Nk

∣∣aihweak
i (s)

∣∣
Besides both boundaries of maximum confidence, we illustrate the
decision boundary (dashed lines in Fig. 4 (a)) at ck(s) = 0 for ori-
entation, too. By selecting one or more data points in the cascaded
scatterplot representation of a node, the data points will be high-
lighted in all other nodes in which they appear. In this way, the
users can easily assess the class assignment and the quality of the
decisions of the selected data throughout the whole cascade. The
assignment of each data instance to either the positive class (e.g.,
person) or the negative class (i.e., background region) is indicated
by the respective color (green or red) of the data point in the cas-
caded scatterplot for each node. For convenience, the users can
choose to display only positive or negative classifications, or both
combined in one plot.

In combination with other views, the cascaded scatterplot is
mainly used to assess the performance of the classifier and to pro-
vide feedback on the training progress. In this way, users gain trust
in the trained classifier and may decide to stop the refinement pro-
cess, either because no further progress in training is experienced
or the quality of the classifier reached a sufficient level. Recogni-
tion of the right point to stop training is of practical relevance, as
the survey by Tomanek and Olsson [36] points out: most of the
participants had a stopping criteria that would fit the context of ad-
hoc training. Furthermore, the cascaded scatterplot is used to select
data instances for labeling and thus, to avoid overfitting of the clas-
sifier, reduce uncertainty of the classification decision, or improve
generalization by exploring new data regions.

To handle the tremendous amount of data we face in the context
of video analysis, the amount of data displayed can be adjusted by
the user. In this way, we maintain the responsiveness of the interac-
tive visualization and reduce overdrawing in the cascaded scatter-
plot. The users can define the frame interval and a number of frames

to be evaluated. These will be randomly chosen from the interval.
Further, we constrain the number of evaluated data instances, by
considering only sliding windows that have an aspect ratio similar
to the average aspect ratio of the positive training examples.

The displacements dx and dy (measured in pixels (px)) and scal-
ing factor s f of the sliding windows are further restricted. Applying
our default values (dx = 5 px, dy = 5 px, and s f = 1.5) results in al-
most two million data instances to be evaluated for 50 frames of a
video with 720× 576 px resolution. This shows that evaluating an
entire video would exceed the capabilities of human and machine
very quickly. Hence, we provide further constraints to keep the
amount of data at a manageable level. Besides random sampling of
a smaller amount of data instances from the video, we use two ad-
ditional methods to reduce the amount of data displayed. The first
method focuses on relevant regions of the data distribution by inter-
active definition of robustness and uncertainty intervals in the cas-
caded scatterplot. The second method automatically selects a fixed
number of the most uncertain detections by using active learning.

6.2 Annotation

After data instances have been selected, either by the users or au-
tomatically by the active learning subsystem, the data points are
visualized in the annotation view (Fig. 4 (f)). This helps the user to
comprehend the quality of the classifier and discover areas of data
instances that have the wrong class assignment (class confusion).

To facilitate overview and efficient annotation of the data in-
stances, we project the data points onto a two-dimensional map
according to their similarity. For this purpose, we use the dimen-
sion reduction algorithm developed by Van der Maaten and Hin-
ton [38], called t-Distributed Stochastic Neighbor Embedding (t-
SNE). Van der Maaten and Hinton showed that this method pro-
vides good visualizations of high-dimensional data lying on related
low-dimensional manifolds, such as images of multiple objects cap-
tured from different viewpoints.

We visualize the two-dimensional map provided by t-SNE by
displaying thumbnails of the sliding windows. Class assignment of
the classifier as well as data selection is shown by the border color
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Figure 5: Selection of the initial training set for bootstrapping.

of the thumbnail (red, green, or orange). Additionally, the thumb-
nails are augmented by the label information if a data instance has
already been annotated (small red or green boxes in the right corner
of the thumbnails). To reduce visual clutter and to increase annota-
tion speed, overlapping thumbnails are depicted as clusters. There-
fore, only the medoid of a cluster is depicted as representative data
instance. The clusters are determined by kernel density estimation
in screen-space with a fixed bandwidth that is adapted to the size
of the thumbnails. The medoids are iteratively selected according
to their density. This way, any overlap of thumbnails is avoided. A
cue of the cluster size is shown by the size of the shadow dropped
by the medoid’s thumbnail. Users can navigate through the data
by zooming and panning the map. Zooming and panning enables
the users to explore particular clusters that will be unfolded step by
step and thus a detailed view on their elements is shown. A min-
imap supports navigation in the data projection.

Similar to Möhrmann et al. [20], we allow for fast labeling of
multiple data instances by selecting and annotating whole clusters
of data instances. This supports the users in one of their main tasks
while iteratively refining the classifier. The thumbnails augmented
with the classifier decision and the label information therefore en-
able the users to make quick decisions which data instances should
be labeled next. Selecting one or multiple data instances in the an-
notation view will also select these instances in the other views.
Therefore, the annotation view helps select similar data instances
for further inspection in the other views.

For annotation, the linked video context view (Fig. 4(d)) is par-
ticularly useful because it displays the selected sliding windows in
their video frames and, thus, complements the thumbnails of the
annotation view by the video context. Furthermore, selection high-
lighting in the cascaded scatterplot helps the users determine the
robustness and confidence of the classifier’s decision. By this pro-
cess, the users can quickly select and label the data that is most
beneficial for further training.

6.3 Model Representation and Manipulation

Understanding the classifier model can be crucial to assess its qual-
ity and to determine further actions to increase the classifier’s per-
formance. Model understanding becomes beneficial, especially in
cases where only a small amount of labeled data is available and,
thus, cross validation is not applicable.

A famous example of classifier failure due to a restrictive dataset
is the often-cited story of an artificial neural net trained by the army
to detect tanks [7]. After first success on training and validation
sets, the system totally failed on a newly captured validation set.
After investigating the issue, it turned out that the system learned
to distinguish between cloudy and sunny skies rather than between
tanks and bushes, due to a bias in the data sets. Recent discussion

exhibited that bias is common to most datasets used to train com-
puter vision systems [37], even though the datasets strive for repre-
senting the whole visual world. Unfortunately, the bias of datasets
in ad-hoc training is presumably disproportionately stronger than
in such carefully assembled datasets. Due to such bias, it is impor-
tant to understand the trained model for verification and validation,
e.g., by using visualization [33]. We therefore visualize the clas-
sifier model and let the users investigate the trained model and its
behavior, as often suggested [16].

One or multiple data instances, selected in the annotation view
or in the cascaded scatterplot, are depicted in the model visualiza-
tion (Fig. 4 (e)). If multiple data instances are selected, the mean
image of their sliding windows is displayed. This outlines their
commonalities that become recognizable as patterns of patterns in
the mean image [42]. This perspective, however, is similar to the
view the classifier has on the data. Next to the mean image, the
corresponding feature response map is depicted. This map is con-
structed by superimposing the color-encoded feature response and
feature weight. A legend of the bimodal red-blue color mapping of
feature response and the luminance mapping of the feature weight is
depicted in Fig. 4 (e). In combination, these two maps help under-
stand the relevance of different parts of the model to the classifiers
and, possibly, the reason for that importance.

To further facilitate model understanding, users may select a sin-
gle node or multiple nodes of the cascade to be evaluated and de-
picted in the model view. Further control of the visualization is pro-
vided by selecting arbitrary features by drag & drop from the cas-
cade information view (Fig. 4 (b), yellow selections). The selected
rectangle features will be displayed in a list with their according
weight and response to the selected data instances. These values
are also marked in the legend. Additionally to that, outlines of the
features—with respect to their position and scale in their classifier
node—augment the aggregated feature response map and the mean
image of data instances. This supports the users in determining the
influence of each feature and the structures it detects.

Based on the model visualization, the users may experience dis-
crepancy between their idea of the intended filter and the trained
classifier model. In this case, the users are provided by several
tools to alleviate the discovered discrepancy by integrating more
background knowledge into the classifier. The users may change
the properties of one or more features, such as their type, scale, lo-
cation, and threshold. Furthermore, the users may add or remove
feature to or from arbitrary nodes. Finally, by brushing on the mean
image, the users can define areas in which the classifier is not al-
lowed to place any features in. After modification of the classifier,
the new model will be automatically refined in the next cycle.

Modification of the model based on the users’ expertise can be
used to boost the learner, especially in early training cycles, by in-
cluding fresh domain knowledge. Overfitting of the learner as well
as model errors due to lack of generalizing training data (i.e., the
samples are not independent and identically distributed) can be de-
tected and corrected (e.g., by removing specialized features, which
is similar to pruning a decision tree). By locking particular regions
of the sliding windows from being evaluated by features, insignifi-
cant areas, such as background or potentially occluded regions can
be excluded from being regarded in training. In this way, training
has to focus on more relevant parts of the training data (e.g., tanks
instead of skies).

Please note that we do not suggest defining the classifier model
from scratch because this is often not possible in complex data do-
mains. Nevertheless, direct model manipulation can be beneficial to
integrate background knowledge that is not available in the form of
labeled data instances, in cases where discrepancy between trained
classifier model and the intended filter was experienced.
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Figure 6: (a) Visual feedback of the classifier’s performance after bootstrapping with 25 positive and 50 negative examples. The high number of
false positive detections is indicated by the large amount of positively classified data points (green dots) in the last cascade node. (b) Selection
of data points that are close and far from the decision boundary. (c) The distribution of sliding windows classified as people (green rectangles).
(d) Labeling of false positive data instances in the annotation view.

7 USAGE SCENARIO

In this section, we provide an exemplary usage scenario of our inter-
active learning system to demonstrate its capabilities and poten-
tials1. We keep the example simple by learning a classifier model in
only four training cycles; this classifier is capable of detecting per-
sons in video sequences. This classifier represents an example of a
filter that may be included in an analytical reasoning process and,
thus, being defined under severe time constraints. For simplicity
reasons, we only depict the most relevant views and elements of the
GUI. We use two video sequences gathered from the i-Lids multi
camera tracking dataset2, one for training and one for validation of
the classifier. To verify our method, we compare its performance
with training the initial classifier (bootstrapped in Cycle 1) using
random sampling of annotated ground truth data instances. Further,
we provide the performance of active uncertainty sampling, accord-
ing to the measure introduced in Equation (2). For both uncertainty
sampling and random sampling, we choose a balanced set of posi-
tive and negative examples.
Cycle 1: A first training set is populated, used to bootstrap the ad-
hoc classifier. We select just 25 positive examples by drawing rect-
angles on the video frames, as illustrated in Fig. 5. Additionally,
50 negative examples are also selected, either by manually defin-
ing the regions or by drawing random samples from the video, in
which only small overlap with positive examples is allowed. Both
positive and negative examples are depicted in the video player and
in separate lists for visual inspection by the user. Based on these
examples, the initial classifier cascade is automatically trained.
Cycle 2: A first glance at the cascaded scatterplot (Fig. 6(a)) ex-
hibits a high false positive rate by the large number of positively
(green dots) classified data instances in the last node. By brows-
ing the video in the context view, this assumption is confirmed: the
green rectangles in Fig. 6(c) represent sliding windows classified as
persons. We choose to label some misclassified background patches
using the annotation view. First, we select the set of positive clas-
sified data instances in the last cascade node, since we are only in-
terested in the sliding windows that are (false-) positively classified
by the whole cascade of classifiers. However, the labeling of these
instances affects all nodes, such that also earlier nodes adapt to im-
portant new patterns. We choose to select some data instances near
the decision boundary and some samples that are far away from
the decision boundary for annotation (Fig. 6 (b)). The first selec-
tion includes the data instances the model is most uncertain about
their classification. This is similar to uncertainty sampling in active
learning. Selection of data instances far away the decision bound-

1The supplementary material includes a video of the usage scenario.
http://www.vis.uni-stuttgart.de/index.php?id=vva

2http://www.homeoffice.gov.uk/science-research/
hosdb/i-lids/

c

Figure 7: Model inspection and manipulation during the 3rd cycle.
(a) The mean image of false positive examples exhibits a black edge
pattern of patterns at the left border that is superimposed by rect-
angle features that response to this pattern. (b) The response map
confirms the impact of the left boundary region to person classifica-
tion. (c) Model manipulation prevents features to be aligned with the
edge pattern, since it is deemed to be not relevant for people detec-
tion (integration of background knowledge).

ary includes the data instances the model is most certain about, but
this does not mean that these instances are assigned to the right
class. Due to the very low number of initially labeled examples
it is very likely that we find patches containing no person in the
region far away from the decision boundary. By labeling data in-
stances of those both regions, we expect to improve the classifier
model most. Within the active learning domain, such query of data
instances far from the decision boundary is sometimes termed ex-
ploration [22]. For labeling, we navigate the annotation view (by
panning and zooming) to a region of clusters that contains various
instances of misclassified samples (see Fig. 6 (d)). Further zooming
reveals the individual members of the clusters. By selecting indi-
vidual instances or whole clusters, the video context view jumps
at the position of the video from which the selected data instance
or the medoid of the cluster were sampled and represents its sliding
window by a rectangle in the selection color (orange). This way, the
spatio-temporal context of the data instances becomes accessible to
the users. Next, we add 50 instances to the set of negative training
examples by selecting clusters or single instances. The thumbnail
images in the annotation view are augmented by red rectangles to
indicate which data instances have been labeled. Finally, we retrain
the classifier and proceed with the next refinement cycle.
Cycle 3: The cascaded scatterplot and the model view of the cas-
cade provide visual feedback about the last training cycle. We spot
decrease of the number of positive classifications. However, we ex-
perience by browsing the classification results that the classifier is
not satisfactorily trained, since still many background regions are
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considered as persons. Hence, we decide to label some false posi-
tive examples again.

During the annotation of 50 false positive data instances (and one
false negative), we inspect the model representation for common
reasons of the wrong classification of background data instances.
The mean image of several false positive samples quickly exhibits
a pattern of patterns, an explicit vertical edge at its left border
(cf. Fig. 7 (a)). Superimposing the mean image with rectangle fea-
tures selected by the boosting algorithm reveals the importance of
the vertical edge pattern for recognition. This importance is further
confirmed by the strong alignment of some of the rectangle features
with the edge and the feature response map in Fig. 7 (b). After we
identified the adaption of the classifier to this pattern, which pre-
sumably stems from different wall colors and the black border sur-
rounding the video, we decide to alleviate its effect. Therefore, we
manipulate the model by defining an area in which the placement
of rectangle features by the training algorithm is prohibited. This
area is illustrated by the red region in Fig. 7 (c).
Cycle 4: After retraining the classifier, we investigate the training
state of the classifier (cf. Fig. 8). It turns out that there is a decay
of the number of negative examples rejected by the final cascade
nodes, whereas the false positive rate determined by the seen train-
ing samples increases. Since this can be seen as stopping criterion,
we terminate the training process at this point.

Figure 8: Since the number of rejected negatives decrease, while the
false positive rate increases in the final cascade nodes, we deem the
training process to be finished.

Discussion: Comparison of the performance of inter-active learn-
ing with random sampling and uncertainty sampling in Fig. 9 re-
veals the benefit of direct knowledge integration by inter-active
learning in the context of ad-hoc classifier training. By only la-
beling about 100 additional data instances, we were able to achieve
within 4 cycles a classification performance that is comparable to
the results of the other learning methods that settle down with the
number of data instances exceeding 500-600 samples. After a first
cycle of initial training, Fig. 9 shows that the annotation of 50 false
positive samples in Cycle 2 successfully decreases the false posi-
tive rate. However, also the number of true positive detections is
reduced, since just negative samples were considered. Model ma-
nipulation and additional data annotation in the third cycle finally
provide us with a performance comparable to the best achievable
results for this complex problem. This means for better results, a
more powerful model has to been chosen. Further, Fig. 9 reveals a
possible problem of uncertainty sampling in ad-hoc training situa-
tions. Its true positive rate suddenly drops when querying labels for
the most uncertain (i.e., near the decision boundary) data instances.
Since this behavior is only observable in the context of uncertainty
sampling, we presume this effect to originate from the query func-
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Figure 9: Comparison of the performance of inter-active learning,
random sampling, and uncertainty sampling with respect to the num-
ber of annotated data instances. Inter-active learning requires only
about 100 additional labels to achieve a similar performance limit as
the other methods achieve, when using 500-600 labels.

tion that introduces a bias to the distribution of data instances.

8 CONCLUSION AND FUTURE WORK

In this paper, we have introduced inter-active learning, a method
that extends active learning to a visual analytics process in order to
define filters by ad-hoc training classifiers. We have outlined the
major challenges of ad-hoc training and presented a way to master
them by tightly coupling human expertise with machine learning.
The main aspects of our approach are: the quality assessment and
model understanding by explorative visualization, the integration
of experts’ background knowledge by data annotation and model
manipulation, and the use of automatic methods to support the users
in refining the classifier model.

We have been able to demonstrate the power of our method by
a usage scenario in which we have compared inter-active learn-
ing with active learning and passive learning (random sampling of
training data). The usage scenario has exhibited the advantages and
possibilities inter-active learning provides.

Although we have been able to show the benefits of inter-active
learning, more research is required to investigate the extent of prac-
tical applications and to judge its efficiency in realistic scenarios.
A question that arises in this context is the required proficiency of
the human experts. Is domain knowledge sufficient to utilize inter-
active learning, or to which extent are skills in machine learning
necessary? Also, further development of new, and improvement
of existing, components for inter-active learning is required, espe-
cially for scalable visualizations, classifier models, and integration
of automatic methods and techniques for semi-supervised learning.
We have demonstrated inter-active learning in the context of video
visual analytics; it remains an open question how successfully it
can be applied to other domains. This would also require a more
comprehensive evaluation of inter-active learning.

As we see, various exciting directions are open for future re-
search, including the inspection of the bias introduced by inter-
active learning into the classifier model, such as annotation bias
by using cluster-based labeling tools, as well as the integration of
fuzzy model modification and data annotation that account for the
uncertainty of the human expert.

ACKNOWLEDGEMENTS

This work was funded by German Research Foundation (DFG) by
the Priority Program “Scalable Visual Analytics” (SPP 1335).

31



REFERENCES

[1] M. Ankerst, M. Ester, and H. Kriegel. Towards an effective coopera-
tion of the user and the computer for classification. In ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining,
pages 179–188, 2000.

[2] J. Baldridge and A. Palmer. How well does active learning actually
work? Time-based evaluation of cost-reduction strategies for lan-
guage documentation. In Conference on Empirical Methods in Natu-
ral Language Processing, volume 1, pages 296–305. Association for
Computational Linguistics, 2009.

[3] B. Becker, R. Kohavi, and D. Sommerfield. Visualizing the simple
bayesian classifier. In U. Fayyad, G. G. Grinstein, and A. Wierse, ed-
itors, Information visualization in data mining and knowledge discov-
ery, chapter 18, pages 237–249. Morgan Kaufmann Publishers Inc.,
2001.

[4] E. Bertini and D. Lalanne. Surveying the complementary role of auto-
matic data analysis and visualization in knowledge discovery. In ACM
SIGKDD Workshop on Visual Analytics and Knowledge Discovery,
pages 12–20, 2009.

[5] D. Caragea, D. Cook, and V. Honavar. Gaining insights into support
vector machine pattern classifiers using projection-based tour meth-
ods. In ACM SIGKDD International Conference on Knowledge Dis-
covery and Data Mining, pages 251–256, 2001.

[6] C. Chen. Top 10 unsolved information visualization problems. Com-
puter Graphics and Applications, 25(4):12–16, 2005.

[7] H. Dreyfus and S. Dreyfus. What artificial experts can and cannot do.
AI & Society, 6(1):18–26, 1992.

[8] J. Fails and D. Olsen Jr. Interactive machine learning. In International
Conference on Intelligent User Interfaces, pages 39–45, 2003.

[9] Y. Freund and R. E. Schapire. A decision-theoretic generalization of
on-line learning and an application to boosting. In European Confer-
ence on Computational Learning Theory, pages 23–37, 1995.

[10] Y. Freund, H. Seung, E. Shamir, and N. Tishby. Selective sampling
using the query by committee algorithm. Machine Learning, 28(2-
3):133–168, 1997.

[11] C. Gasperin. Active learning for anaphora resolution. In NAACL
HLT Workshop on Active Learning for Natural Language Processing,
pages 1–8, 2009.

[12] H. Grabner and H. Bischof. On-line boosting and vision. In IEEE
Conference on Computer Vision and Pattern Recognition (CVPR),
pages 260–267, 2006.

[13] Y. Guo and D. Schuurmans. Discriminative batch mode active learn-
ing. Advances in Neural Information Processing Systems (NIPS),
20:593–600, 2008.

[14] F. Heimerl, S. Koch, H. Bosch, and T. Ertl. Visual classifier training
for text document retrieval. IEEE Transactions on Visualization and
Computer Graphics (Proceedings Visual Analytics Science and Tech-
nology 2012), 18(12), 2012.
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