The Project

The project aims at developing an architecture designed for extracting semantic knowledge from information coded in annotation graphs and adding this knowledge to an already existing resource.

Technical Preliminaries

- **Ontology** represents a set of concepts within a domain and the relationships between those concepts.

\[
\text{Driver}(x) \rightarrow \text{Person}(x) \land \exists y: \text{CanFly}(y) \land \text{drives}(x, y) \\
\text{Penguin}(x) \rightarrow \text{Bird}(x) \land \neg \text{CanFly}(x)
\]

- **Annotation graph** is a graph-based, multilayered annotation scheme where each level of linguistic annotation is treated independently.

Problem

IF

Consistent ontology \(O \) + New Axiom \(A \)

THEN

\(O \) has to be adapted to \(A \)

An ontology is logically **inconsistent** if it has no model.

Sources of Logical Inconsistency and Adaptation Solutions

1. **Errors of the information extraction procedure**

 Solution: Fix bugs in the IE procedure

2. **Polysemy of terms**

 Adaptation Solution: “Split” polysemous terms

3. **Overgeneralization of concepts**

 Adaptation Solution: Regenerate problematic concepts

The overall architecture

- **Conclusion and Future Work**

 - **Presented adaptation procedure**
 - is an automatic rewriting technique
 - is knowledge preserving (as less information as possible is lost)
 - does not require an extension of the underlying logic
 - **Future work concerns**:
 - The characterization of the complexity of the algorithm.
 - Testing the algorithm on large ontologies.

- **Context of this work**

 - This work is sponsored by the German Research Foundation as project C2 in the research unit FOR 437 “Text Technological Modeling of Information”.